Featured Research

from universities, journals, and other organizations

Nanotechnology In The Food Chain? Nanomaterials Tested Not Concentrating In Higher Level Organisms

Date:
June 1, 2008
Source:
National Institute of Standards and Technology
Summary:
New research shows that while engineered nanomaterials can be transferred up the lowest levels of the food chain from single celled organisms to higher multicelled ones, the amount transferred was relatively low and there was no evidence of the nanomaterials concentrating in the higher level organisms.

Closeup photomicrograph of rotifer B. calyciflorus (whole organism seen in upper left corner) with quantum dots assimilated from ingested ciliates appearing red.
Credit: NIST

New research shows that while engineered nanomaterials can be transferred up the lowest levels of the food chain from single celled organisms to higher multicelled ones, the amount transferred was relatively low and there was no evidence of the nanomaterials concentrating in the higher level organisms. The preliminary results observed by researchers from the National Institute of Standards and Technology (NIST) suggest that the particular nanomaterials studied may not accumulate in invertebrate food chains.

Related Articles


The same properties that make engineered nanoparticles attractive for numerous applications--biological and environmental stability, small size, solubility in aqueous solutions and lack of toxicity to whole organisms--also raise concerns about their long-term impact on the environment. NIST researchers wanted to determine if nanoparticles could be passed up a model food chain and if so, did the transfer lead to a significant amount of bioaccumulation (the increase in concentration of a substance in an organism over time) and biomagnification (the progressive buildup of a substance in a predator organism after ingesting contaminated prey).

In their study, the NIST team investigated the dietary accumulation, elimination and toxicity of two types of fluorescent quantum dots using a simple, laboratory-based food chain with two microscopic aquatic organisms--Tetrahymena pyriformis, a single-celled ciliate protozoan, and the rotifer Brachionus calyciflorus that preys on it. The process of a material crossing different levels of a food chain from prey to predator is called "trophic transfer."

Quantum dots are nanoparticles engineered to fluoresce strongly at specific wavelengths. They are being studied for a variety of uses including easily detectable tags for medical diagnostics and therapies. Their fluorescence was used to detect the presence of quantum dots in the two microorganisms.

The researchers found that both types of quantum dots were taken in readily by T. pyriformis and that they maintained their fluorescence even after the quantum dot-containing ciliates were ingested by the higher trophic level rotifers. This observation helped establish that the quantum dots were transferred across the food chain as intact nanoparticles and that dietary intake is one way that transfer can occur. The researchers noted that, "Some care should be taken, however, when extrapolating our laboratory-derived results to the natural environment."

"Our findings showed that although trophic transfer of quantum dots did take place in this simple food chain, they did not accumulate in the higher of the two organisms," says lead author David Holbrook. "While this suggests that quantum dots may not pose a significant risk of accumulating in aquatic invertebrate food chains in nature, additional research beyond simple laboratory experiments and a more exact means of quantifying transferred nanoparticles in environmental systems are needed to be certain."


Story Source:

The above story is based on materials provided by National Institute of Standards and Technology. Note: Materials may be edited for content and length.


Journal Reference:

  1. R.D. Holbrook, K.E. Murphy, J.B. Morrow and K.D. Cole. Trophic transfer of nanoparticles in a simplified invertebrate food chain. Nature Nanotechnology, June 2008

Cite This Page:

National Institute of Standards and Technology. "Nanotechnology In The Food Chain? Nanomaterials Tested Not Concentrating In Higher Level Organisms." ScienceDaily. ScienceDaily, 1 June 2008. <www.sciencedaily.com/releases/2008/05/080530174732.htm>.
National Institute of Standards and Technology. (2008, June 1). Nanotechnology In The Food Chain? Nanomaterials Tested Not Concentrating In Higher Level Organisms. ScienceDaily. Retrieved March 31, 2015 from www.sciencedaily.com/releases/2008/05/080530174732.htm
National Institute of Standards and Technology. "Nanotechnology In The Food Chain? Nanomaterials Tested Not Concentrating In Higher Level Organisms." ScienceDaily. www.sciencedaily.com/releases/2008/05/080530174732.htm (accessed March 31, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Tuesday, March 31, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Dutch Architects Show Off 3D House-Building Prowess

Dutch Architects Show Off 3D House-Building Prowess

Reuters - Innovations Video Online (Mar. 31, 2015) Dutch architects are constructing a 3D-printed canal-side home, which they hope will spark an environmental revolution in the house-building industry. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com
Solar Plane Stops in China

Solar Plane Stops in China

Reuters - News Video Online (Mar. 31, 2015) Solar Impulse 2 stops over in China&apos;s Chonqing, completing the fifth leg in its bid to become the first solar powered plane to travel around the globe. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Solar Impulse Lands in China After 20-Hour Flight from Myanmar

Solar Impulse Lands in China After 20-Hour Flight from Myanmar

AFP (Mar. 31, 2015) Solar Impulse 2 lands in China, the world&apos;s biggest carbon emitter, completing the fifth leg of its landmark global circumnavigation powered solely by the sun. Duration: 00:55 Video provided by AFP
Powered by NewsLook.com
Bionic Ants Could Be Tomorrow's Factory Workers

Bionic Ants Could Be Tomorrow's Factory Workers

Reuters - Innovations Video Online (Mar. 30, 2015) Industrious 3D printed bionic ants working together could toil in the factories of the future, says German technology company Festo. The robotic insects cooperate and coordinate their actions and movements to achieve a common aim. Amy Pollock reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins