Featured Research

from universities, journals, and other organizations

Cooperative System Could Wipe Out Car Alarm Noise

Date:
June 26, 2008
Source:
Penn State
Summary:
The persistent, annoying blare of an ignored car alarm may become a sound of the past if a cooperative, mutable and silent network of monitors proposed by Penn State researchers is deployed in automobiles and parking lots.

The persistent, annoying blare of an ignored car alarm may become a sound of the past if a cooperative, mutable and silent network of monitors proposed by Penn State researchers is deployed in automobiles and parking lots.

"The basis of this system is trust," says Sencun Zhu, assistant professor of computer science and engineering. "You need to trust the entity that distributes the system's sensors, so you can rely on all the monitored cars having the goal of protecting your car and others from theft."

Working with Guohong Cao, associate professor of computer science and engineering, and Hui Song, recent Penn State graduate and now an assistant professor at Frostburg State University, Zhu developed a monitoring system that relies on a network formed by the cars parked in a parking lot. When a car enters a lot and parks, the sensor is alerted -- probably when the car door locks -- and it sends out a signal that in essence says, "hello, I am here." Sensors in nearby cars acknowledge the signal and incorporate the new car into their network. Periodically, each car sends out a signal indicating that it is still there. When the driver unlocks the car, the sensor sends out a "goodbye" message and the network removes that car, and it drives away.

If, however, a car leaves the network without issuing a goodbye message, the other cars will notice the absence or the "still here" message. Once the system has confirmed that the car is gone, checking that other cars have not received the "still here" message, the monitoring sensor sends a signal identifying the car to the base unit in the parking lot, which will phone the owner to indicate the car is missing. The owner can then check it out.

"Our thought is that the apartment complex owner could provide the sensors with the parking stickers as an additional free perk," says Zhu, also assistant professor of information sciences and technology at Penn State. "All they need is the base unit, the car owner's phone number and the sensors in the car for the car should be safe in the lot."

If a car is stolen from the lot, it is preferable that the theft be noticed and reported before the car leaves the lot, but if it is not, the Sensor network-based Vehicle Anti-Theft system, SVATS, has another layer of protection.

Although the main or master sensor needs to be connected to the car's power system and so is fairly easily disabled by thieves, other slave sensors would be distributed in the car. These sensors might be activated when the master sensor no longer operates and begin to send out an identification signal. The researchers hope to be able to use existing wireless devices that are at intersections and roadsides, to track the sensors in the stolen car. While these wireless nodes are not on every street, in areas where they are used to sense traffic patterns, stop light timing and other things, they can be used to track stolen cars. Because the slave sensors are very small, they would be very difficult to locate and destroy, while conventional location equipment, such as various G.P.S. systems, can be identified and neutralized.

"Right now the sensors we are testing are about the size of a dollar coin with leads coming off," says Zhu. "We will eventually make them only about a cubic millimeter, small enough to embed in a parking sticker and very inexpensive to manufacture." A cubic millimeter is about the size of an ice cream sprinkle.

The researchers presented information on their system at the Institute of Electrical and Electronic Engineer's Infocom 2008 Conference in Phoenix. Experimental evaluation of the SVATS system used a laptop as a base station and one sensor per vehicle in a Penn State parking lot. The base station transmitted once per second while the vehicle sensors sent live messages every 200 milliseconds. Each sensor could monitor up to seven other nodes but should be monitored by at least three other nodes.

The researchers tested two different detection methods. The signature-based method took four to nine seconds to detect the absence of the stolen vehicle. This method requires that at least three nodes recognize that the stolen car has moved before sending an alert. Because of this requirement, there are no false positives and consequently, no false alarms. The system works in a parking lot and can track stolen vehicles.

According to Zhu, street parking is more difficult to deal with than parking lots, however, he believes that if apartment buildings along the street band together to provide sensors and base stations it might work as well. Because of the trust problem, he does not see the sensors being incorporated into cars from the factory, because identifying who owns which car and sensor would be difficult. Rather, Zhu thinks that perhaps eventually, some government office like a state's department of transportation could provide the sensors and keep track of the vehicles.

While the plan now is to have the base station contact the car owner by phone, eventually the option of having the call go to a protective service or the police for a fee is possible.

The National Science Foundation and the Army Research Office funded this research.


Story Source:

The above story is based on materials provided by Penn State. Note: Materials may be edited for content and length.


Cite This Page:

Penn State. "Cooperative System Could Wipe Out Car Alarm Noise." ScienceDaily. ScienceDaily, 26 June 2008. <www.sciencedaily.com/releases/2008/06/080624110906.htm>.
Penn State. (2008, June 26). Cooperative System Could Wipe Out Car Alarm Noise. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2008/06/080624110906.htm
Penn State. "Cooperative System Could Wipe Out Car Alarm Noise." ScienceDaily. www.sciencedaily.com/releases/2008/06/080624110906.htm (accessed July 31, 2014).

Share This




More Matter & Energy News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Britain Testing Driverless Cars on Roadways

Britain Testing Driverless Cars on Roadways

AP (July 30, 2014) British officials said on Wednesday that driverless cars will be tested on roads in as many as three cities in a trial program set to begin in January. Officials said the tests will last up to three years. (July 30) Video provided by AP
Powered by NewsLook.com
7 Ways to Use Toothpaste: Howdini Hacks

7 Ways to Use Toothpaste: Howdini Hacks

Howdini (July 30, 2014) Fresh breath and clean teeth are great, but have you ever thought, "my toothpaste could be doing more". Well, it can! Lots of things! Howdini has 7 new uses for this household staple. Video provided by Howdini
Powered by NewsLook.com
Amid Drought, UCLA Sees Only Water

Amid Drought, UCLA Sees Only Water

AP (July 30, 2014) A ruptured 93-year-old water main left the UCLA campus awash in 8 million gallons of water in the middle of California's worst drought in decades. (July 30) Video provided by AP
Powered by NewsLook.com
Smartphone Powered Paper Plane Debuts at Airshow

Smartphone Powered Paper Plane Debuts at Airshow

AP (July 30, 2014) Smartphone powered paper airplane that was popular on crowdfunding website KickStarter makes its debut at Wisconsin airshow (July 30) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



    Save/Print:
    Share:

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile: iPhone Android Web
    Follow: Facebook Twitter Google+
    Subscribe: RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins