Featured Research

from universities, journals, and other organizations

First Full 3-D View Of Cracks Growing In Steel

Date:
July 22, 2008
Source:
European Synchrotron Radiation Facility
Summary:
Researchers have revealed how a growing crack interacts with the 3-D structure of stainless steel. By using a new technique, they could determine the internal 3-D structure of the sample without destroying it. Afterwards, they initiated a crack and studied how it grew between the grains. The results could be useful to make more performing materials for, for example, safer power plants.

Cracks forming in the inside of a stainless steel wire are coloured red.
Credit: Andrew King

A team of researchers from the University of Manchester, the National Institute of Applied Sciences (INSA) in Lyon (France) and the ESRF has revealed how a growing crack interacts with the 3D crystal structure of stainless steel. By using a new grain mapping technique it was possible to determine the internal 3D structure of the material without destroying the sample.

Related Articles


Afterwards, a crack was initiated in the stainless steel, and the scientists were able to study how the crack grew between the grains. This is the first time that such an experiment has used the 3D grain mapping technique, and the first results have just been published in the journal Science.

Cracks can appear in stainless steel components when stress or strain is combined with a corrosive environment that attacks sensitive grain boundaries. These cracks represent a critical failure mechanism. In power generation plants, certain grain boundaries can become sensitive during heat treatments or during fast neutron irradiation in nuclear power stations.

Most metals used for engineering are made up of many small crystals or grains. The scientists used a new technique called diffraction contrast tomography, developed at the ESRF, to obtain a 3D map of all grains in a section of a stainless steel wire measuring 0.4 mm in diameter. This map contained the shapes, positions, and orientations of 362 different grains. The next stage of the experiment involved putting the wire into a suitable corrosive liquid, and applying a load to cause microcracks to grow between grains. During the crack growth, 3D tomographic scans (of 30 minutes each) were made at intervals of between two hours and a few minutes to follow the progress of the crack. This is the first in-situ experiment of this kind to use non-destructive 3D grain mapping techniques.

“The cracks grew along the boundaries between the grains which we had mapped in 3D, and we could visualize both the growing crack and certain special boundaries that resist cracking”, explains Andrew King, corresponding author of the paper in Science. “Some of these resistant boundaries were not the ones that we expected".

The special, crack-resistant boundaries may be of key importance to the metallurgy industry. Materials containing more of these boundaries are also more resistant to this type of cracking. Being able to study crack growth in-situ will allow scientists to understand what types of grain structures will give the best performing materials, leading, for example, to more efficient and safer power plants, and more generally to more lightweight alloys in other sectors of metallurgy and engineering.


Story Source:

The above story is based on materials provided by European Synchrotron Radiation Facility. Note: Materials may be edited for content and length.


Journal Reference:

  1. King, A. et al. . Science, 18 July 2008

Cite This Page:

European Synchrotron Radiation Facility. "First Full 3-D View Of Cracks Growing In Steel." ScienceDaily. ScienceDaily, 22 July 2008. <www.sciencedaily.com/releases/2008/07/080717140421.htm>.
European Synchrotron Radiation Facility. (2008, July 22). First Full 3-D View Of Cracks Growing In Steel. ScienceDaily. Retrieved January 27, 2015 from www.sciencedaily.com/releases/2008/07/080717140421.htm
European Synchrotron Radiation Facility. "First Full 3-D View Of Cracks Growing In Steel." ScienceDaily. www.sciencedaily.com/releases/2008/07/080717140421.htm (accessed January 27, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Tuesday, January 27, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Cablevision Enters Wi-Fi Phone Fray

Cablevision Enters Wi-Fi Phone Fray

Reuters - Business Video Online (Jan. 26, 2015) The entry by Cablevision and Google could intensify the already heated price wars for mobile phone service. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Hector the Robot Mimics a Giant Stick Insect

Hector the Robot Mimics a Giant Stick Insect

Reuters - Innovations Video Online (Jan. 26, 2015) A robot based on a stick insect can navigate difficult terrain autonomously and adapt to its surroundings. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Scientists Model Flying, Walking Drone After Vampire Bats

Scientists Model Flying, Walking Drone After Vampire Bats

Buzz60 (Jan. 26, 2015) Swiss scientists build a new drone that can both fly and walk, modeling it after the movements of common vampire bats. Jen Markham (@jenmarkham) has the story. Video provided by Buzz60
Powered by NewsLook.com
Obama's Wildlife Plan Renews Alaska Drilling Debate

Obama's Wildlife Plan Renews Alaska Drilling Debate

Newsy (Jan. 26, 2015) President Obama&apos;s proposal aims to protect more land in the Arctic National Wildlife Refuge, but so far, all that&apos;s materialized is a war of words. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

    Health News

    Environment News

    Technology News



    Save/Print:
    Share:

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile: iPhone Android Web
    Follow: Facebook Twitter Google+
    Subscribe: RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins