Featured Research

from universities, journals, and other organizations

New 'Electrifying' Theory: Analysis To Improve Superconducting Fault-current Limiters

Date:
August 19, 2008
Source:
DOE/Ames Laboratory
Summary:
A new theory could help build future superconducting alternating-current fault-current limiters for electricity transmission and distribution systems. The work identifies design strategies that can reduce costs and improve efficiency in a bifilar fault-current limiter, a new and promising type of superconducting fault-current limiter.

John R. Clem, a physicist at the U.S. Department of Energy’s Ames Laboratory, has developed a theory that will help build future superconducting alternating-current fault-current limiters for electricity transmission and distribution systems. Clem’s work identifies design strategies that can reduce costs and improve efficiency in a bifilar fault-current limiter, a new and promising type of superconducting fault-current limiter.

Related Articles


“I was able to theoretically confirm that planned design changes to the current bifilar fault-current limiter being developed by Siemens and American Superconductor would decrease AC losses in the system,” said Clem. “My calculations are good news for the future of the device.”

Fault-current limiters protect power grids from sudden spikes in power, much like household surge protectors are used to save televisions and computers from damage during a lightning strike. Limiting fault currents is becoming an increasingly critical issue for large urban utilities, since these currents grow along with growing electric power loads. Superconductors enable a novel and very promising type of fault current limiter — or “firewall” — that rapidly switches to a resistive state when current exceeds the superconductors critical current. At the same time, in normal operation, the superconductors’ near-zero AC resistance minimizes power loss and makes the fault current limiter effectively “invisible” in the electric grid.

Clem analyzed a type of fault-current limiter, called a bifilar fault-current limiter, developed by Siemens and American Superconductor Corporation, who are now under contract with the DOE to demonstrate the technology at transmission voltages in the power grid of Southern California Edison. The team also includes Nexans, which is developing the terminations for the transmission fault-current limiter, and Air Liquide, which is providing the cryogenic cooling system. Bifilar fault-current limiters are made from many turns of insulated superconducting tape wound into a coil shaped like a disk or a pancake. The tape consists of a thin, flat strip of superconducting material sandwiched between two strips of stainless steel. In the bifilar fault-current limiter design, adjacent tapes in the pancake coil carry current in opposite directions to effectively cancel out each tape’s magnetic fields, thereby limiting electrical losses.

Siemens and American Superconductor were seeking to optimize the performance of their bifilar design. They asked Clem to predict how AC losses would change as the width of the tape is increased. Clem reported his findings, "Field and current distributions and ac losses in a bifilar stack of superconducting strips," in a recent issue of Physical Review B.

“I modeled the bifilar design as an infinite stack of superconducting tapes, in which adjacent tapes carry current in opposite directions,” said Clem. “I was able to find an exact solution for the magnetic fields and currents that are generated in such a stack of tapes. Once I calculated how the magnetic flux penetrates into the tape, I then could calculate how much energy is lost in each current cycle for different tape widths and spacings between adjacent tapes.”

“Clem’s result was not obvious since there are competing mechanisms for AC loss in the bifilar configuration. It turns out that for typical parameters, when the spacing between adjacent tapes is small enough, the result is very simple: AC losses decrease as the tape width increases and the spacing decreases,” said Alex Malozemoff, chief technical officer of American Superconductor. “This result is helping to guide us and our partner Siemens in an optimized design for a fault- current limiter in a major DOE-sponsored program, and it is expected to open a path to a commercial product in the future.”

Clem’s research was funded by the DOE Office of Science, Basic Energy Sciences Office.


Story Source:

The above story is based on materials provided by DOE/Ames Laboratory. Note: Materials may be edited for content and length.


Cite This Page:

DOE/Ames Laboratory. "New 'Electrifying' Theory: Analysis To Improve Superconducting Fault-current Limiters." ScienceDaily. ScienceDaily, 19 August 2008. <www.sciencedaily.com/releases/2008/08/080815170623.htm>.
DOE/Ames Laboratory. (2008, August 19). New 'Electrifying' Theory: Analysis To Improve Superconducting Fault-current Limiters. ScienceDaily. Retrieved February 28, 2015 from www.sciencedaily.com/releases/2008/08/080815170623.htm
DOE/Ames Laboratory. "New 'Electrifying' Theory: Analysis To Improve Superconducting Fault-current Limiters." ScienceDaily. www.sciencedaily.com/releases/2008/08/080815170623.htm (accessed February 28, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Saturday, February 28, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Elon Musk's Hyperloop Moves Forward

Elon Musk's Hyperloop Moves Forward

Buzz60 (Feb. 27, 2015) Zipping around at 800-miles an hour is coming closer to reality in California. An entire town is being built around Elon Musk&apos;s Hyperloop concept and it wants you to stop in for a ride when it&apos;s ready. Brett Larson is on board. Video provided by Buzz60
Powered by NewsLook.com
Vibrating Bicycle Senses Traffic

Vibrating Bicycle Senses Traffic

Reuters - Innovations Video Online (Feb. 26, 2015) Dutch scientists have developed a smart bicycle that uses sensors, wireless technology and video to warn riders of traffic dangers. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
In Japan, Robot Dogs Are for Life -- And Death

In Japan, Robot Dogs Are for Life -- And Death

AFP (Feb. 25, 2015) Robot dogs are the perfect pet for some in Japan who go to repairmen-turned-vets when their pooch breaks down - while a full Buddhist funeral ceremony awaits those who don&apos;t make it. Duration: 02:40 Video provided by AFP
Powered by NewsLook.com
London Show Dissects History of Forensic Science

London Show Dissects History of Forensic Science

AFP (Feb. 25, 2015) Forensic science, which has fascinated generations with its unravelling of gruesome crime mysteries, is being put under the microscope in an exhibition of real criminal investigations in London. Duration: 00:53 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins