Featured Research

from universities, journals, and other organizations

Normalizing Tumor Vessels To Improve Cancer Therapy

Date:
August 26, 2008
Source:
Children's Hospital Boston
Summary:
Leaky, twisted blood vessels in tumors often prevent chemotherapy drugs from reaching their target. Children's Hospital Boston researchers have found that tumor capillary cells, unlike their normal counterparts, are hyper-contractile and respond abnormally to physical and mechanical cues, producing irregularly-shaped capillaries and creating gaps between cells that caused vessel leakiness. A protein called Rho-associated kinase is the likely culprit; inhibiting its function normalized the tumor cells' mechanical responsiveness, as well as blood vessel architecture.

In the lab, normal capillary cells form regularly-shaped capillaries when placed on a stiff surface mimicking a tumor's matrix; tumor cells, on the other hand, often form tangled capillaries that are bloated in some regions and excessively thin in others. Such vascular malformations are commonly seen in animal and human tumors, causing irregular blood flow that prevents chemotherapeutic drugs from being evenly distributed throughout the whole tumor.
Credit: Image courtesy of Children's Hospital Boston

Chemotherapy drugs often never reach the tumors they're intended to treat, and radiation therapy is not always effective, because the blood vessels feeding the tumors are abnormal—"leaky and twisty" in the words of the late Judah Folkman, MD, founder of the Vascular Biology program at Children's Hospital Boston.

Related Articles


Now, Vascular Biology researchers have discovered an explanation for these abnormalities that could, down the road, improve chemotherapy drug delivery. Their findings were published in the August 12 issue of the Proceedings of the National Academy of Sciences.

A tumor's capillaries—small blood vessels that directly deliver oxygen and nutrients to cancer cells—are irregularly shaped, being excessively thin in some areas and forming thick, snarly clumps in others. These malformations create a turbulent, uneven blood flow, so that too much blood goes to one region of the tumor, and too little to another. In addition, the capillary endothelial cells lining the inner surface of tumor capillaries, normally a smooth, tightly-packed sheet, have gaps between them, causing vessel leakiness.

"These abnormal features of tumor vessels impair delivery of circulating chemotherapeutic drugs to the actual tumor site" says Kaustabh Ghosh, PhD, first author on the paper, and a postdoctoral fellow in the laboratory of Donald Ingber, MD, PhD, the paper's senior author and interim co-director of the Vascular Biology program.

The idea of a therapy aimed at normalizing a tumor's blood vessels, to ensure that chemotherapeutic agents reach the tumor, has already been explored, but these attempts have only targeted soluble factors, particularly vascular endothelial growth factor (VEGF). Tumors secrete VEGF in abundance; it not only promotes blood vessel growth (angiogenesis), but makes them leaky. While blocking VEGF action helps reduce leakiness and improves vessel function, the effects have been transient, Ghosh says.

Ghosh and Ingber took a different approach, focusing on the role of mechanical forces on tumor blood vessels, which had previously been ignored. Past studies by Ingber and colleagues have shown that a capillary cell's sensitivity to soluble angiogenic factors like VEGF—and subsequent blood vessel formation—are determined by the mechanical balance between the cell's internal state of tension or contraction, and that of the surrounding support structure, or matrix, to which the cell adheres. These forces guide normal vascular pattern formation. Because tumor vessels are malformed, Ghosh wondered whether tumor capillary cells have lost the normal cells' ability to sense and respond to changes in matrix stiffness and distortion.

To address this question, the researchers studied capillary cells isolated from mice prostate tumors, provided by Andrew Dudley, PhD, in the lab of Michael Klagsbrun, PhD, in the Vascular Biology Program, and exposed them to cyclic mechanical stress—mimicking the pulsatile nature of blood flow and matrix distortion resulting from rhythmic heart beats. They found that normal capillary cells aligned themselves uniformly perpendicular to the force direction, but most of the tumor capillary cells failed to reorient, says Ghosh. These cells were "all over the place," and due to this lack of alignment, gaps appeared between neighboring cells, which may explain the increased vessel permeability.

Ghosh and colleagues also found that tumor capillary cells sense and respond to matrix rigidity differently than normal cells. When placed on a stiff surface, mimicking the tumor matrix, the cells tended to keep spreading even after normal capillary cells stopped doing so. Because of these differences in "mechanosensing," the tumor capillary cells were able to form capillaries even when cell densities were very low, while normal cells failed to do so. At higher cell densities, normal cells formed nice capillaries, whereas the tumor cells balled up into tangled clumps, creating the irregular patterns seen in many images of tumor blood vessels. "Because high cell density increases contractility across the entire cell layer, these findings suggested that tumor capillary cells are inherently hyper-contractile," says Ghosh.

The researchers went on to find that this hyper-contractility results from an increase in the levels of a protein called Rho-associated kinase (ROCK), which controls tension within the cell. When they treated tumor capillary cells with an inhibitor of ROCK, they normalized the behavior of the tumor capillary cells, so that the treated cells exhibited near-normal mechanical responses and formed more regularly-shaped tubular vessels.

"In this study, we've uncovered a previously unrecognized role for tumor capillary cell mechanosensing and contractility in the formation of irregular tumor vessels, and have identified potential new targets for vascular normalization therapy that might be implemented in the clinic someday," Ghosh says.


Story Source:

The above story is based on materials provided by Children's Hospital Boston. Note: Materials may be edited for content and length.


Cite This Page:

Children's Hospital Boston. "Normalizing Tumor Vessels To Improve Cancer Therapy." ScienceDaily. ScienceDaily, 26 August 2008. <www.sciencedaily.com/releases/2008/08/080825141906.htm>.
Children's Hospital Boston. (2008, August 26). Normalizing Tumor Vessels To Improve Cancer Therapy. ScienceDaily. Retrieved October 24, 2014 from www.sciencedaily.com/releases/2008/08/080825141906.htm
Children's Hospital Boston. "Normalizing Tumor Vessels To Improve Cancer Therapy." ScienceDaily. www.sciencedaily.com/releases/2008/08/080825141906.htm (accessed October 24, 2014).

Share This



More Health & Medicine News

Friday, October 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

IKEA Desk Converts From Standing to Sitting With One Button

IKEA Desk Converts From Standing to Sitting With One Button

Buzz60 (Oct. 24, 2014) IKEA is out with a new convertible desk that can convert from a sitting desk to a standing one with just the push of a button. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com
Ebola Protective Suits Being Made in China

Ebola Protective Suits Being Made in China

AFP (Oct. 24, 2014) A factory in China is busy making Ebola protective suits for healthcare workers and others fighting the spread of the virus. Duration: 00:38 Video provided by AFP
Powered by NewsLook.com
WHO: Millions of Ebola Vaccine Doses by 2015

WHO: Millions of Ebola Vaccine Doses by 2015

AP (Oct. 24, 2014) The World Health Organization said on Friday that millions of doses of two experimental Ebola vaccines could be ready for use in 2015 and five more experimental vaccines would start being tested in March. (Oct. 24) Video provided by AP
Powered by NewsLook.com
Doctor in NYC Quarantined With Ebola

Doctor in NYC Quarantined With Ebola

AP (Oct. 24, 2014) An emergency room doctor who recently returned to the city after treating Ebola patients in West Africa has tested positive for the virus. He's quarantined in a hospital. (Oct. 24) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins