Featured Research

from universities, journals, and other organizations

Type 2 Diabetes Under Stress

Date:
September 9, 2008
Source:
Journal of Clinical Investigation
Summary:
Type 2 diabetes is caused by an inability of the beta-cells in the pancreas to produce enough of the hormone insulin to meet the body's needs. Central to this is a loss of beta-cell function and mass as a result of insulin resistance (the inability of cells in the body to respond appropriately to insulin).

Type 2 diabetes is caused by an inability of the beta-cells in the pancreas to produce enough of the hormone insulin to meet the body's needs.

Related Articles


Central to this is a loss of beta-cell function and mass as a result of insulin resistance (the inability of cells in the body to respond appropriately to insulin).

New insight into how insulin resistance leads to loss of beta-cell mass has now been provided by studies in multiple mouse models of type 2 diabetes performed by Randal Kaufman and colleagues, at the University of Michigan Medical School, Ann Arbor.

In the study, in the absence of the protein CHOP, the symptoms of diabetes improved in two mouse models of the disease, and this was associated with increased beta-cell mass. In addition, the structure of the beta-cells appeared to be more normal and they were encouraged to survive.

CHOP is a protein that is involved in promoting the death of a cell that is under stress because it is producing more protein than it is able to handle.

The authors therefore propose that insulin resistance causes beta-cells to make more insulin than they can handle, such that the stress signaling pathways that activate CHOP are initiated and the beta-cells die, thereby decreasing beta-cell mass. Further, it is suggested that drugs that modulate the stress response to over production of insulin might provide a new approach to the treatment of type 2 diabetes.


Story Source:

The above story is based on materials provided by Journal of Clinical Investigation. Note: Materials may be edited for content and length.


Journal Reference:

  1. Chop deletion reduces oxidative stress, improves beta-cell function, and promotes cell survival in multiple mouse models of diabetes. Journal of Clinical Investigation, September 5, 2008

Cite This Page:

Journal of Clinical Investigation. "Type 2 Diabetes Under Stress." ScienceDaily. ScienceDaily, 9 September 2008. <www.sciencedaily.com/releases/2008/09/080905215945.htm>.
Journal of Clinical Investigation. (2008, September 9). Type 2 Diabetes Under Stress. ScienceDaily. Retrieved March 31, 2015 from www.sciencedaily.com/releases/2008/09/080905215945.htm
Journal of Clinical Investigation. "Type 2 Diabetes Under Stress." ScienceDaily. www.sciencedaily.com/releases/2008/09/080905215945.htm (accessed March 31, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Tuesday, March 31, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Soda, Salt and Sugar: The Next Generation of Taxes

Soda, Salt and Sugar: The Next Generation of Taxes

Washington Post (Mar. 30, 2015) — Denisa Livingston, a health advocate for the Dinι Community Advocacy Alliance, and the Post&apos;s Abby Phillip discuss efforts around the country to make unhealthy food choices hurt your wallet as much as your waistline. Video provided by Washington Post
Powered by NewsLook.com
UnitedHealth Buys Catamaran

UnitedHealth Buys Catamaran

Reuters - Business Video Online (Mar. 30, 2015) — The $12.8 billion merger will combine the U.S.&apos; third and fourth largest pharmacy benefit managers. Analysts say smaller PBMs could also merge. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
S. Leone in New Anti-Ebola Lockdown

S. Leone in New Anti-Ebola Lockdown

AFP (Mar. 28, 2015) — Sierra Leone imposed a three-day nationwide lockdown Friday for the second time in six months in a bid to prevent a resurgence of the deadly Ebola virus. Duration: 01:17 Video provided by AFP
Powered by NewsLook.com
These Popular Antibiotics Can Cause Permanent Nerve Damage

These Popular Antibiotics Can Cause Permanent Nerve Damage

Newsy (Mar. 27, 2015) — A popular class of antibiotic can leave patients in severe pain and even result in permanent nerve damage. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins