Science News
from research organizations

Rail, Road Or Waterway?

Date:
September 10, 2008
Source:
Fraunhofer-Gesellschaft
Summary:
Is road transport the best way to send oranges from Spain to northern Germany? Or would it be better to ship them by rail or waterway for part of the route? A new software package determines the cheapest, fastest or most environmentally compatible mode of transportation.
Share:
       
FULL STORY

Is road transport the best way to send oranges from Spain to northern Germany? Or would it be better to ship them by rail or waterway for part of the route? A new software package determines the cheapest, fastest or most environmentally compatible mode of transportation.

Prime Argentine steak accompanied by a good French wine, with strawberries from Spain as dessert. And mood music playing on a stereo system made in Japan. Most national and international freight is transported by road, because it is the least expensive option. But this is likely to change soon, due to road tolls and the rising cost of fuel. Even when it’s a question of making sure that the merchandise is delivered precisely on time, trucks are not always the most reliable solution. It can often take a long time to clear goods through the container terminals, and tailbacks on the motorways can cause additional delays.

So what is the optimum strategy for transporting goods over a particular route? Where could costs be saved by using inland waterways, and at what point would it be best to transship to a road or rail vehicle? What is the cheapest, fastest, or most environmentally compatible overall solution? Answers can be provided by a new software package developed by researchers at the Fraunhofer Institute for Material Flow and Logistics IML in Dortmund.

“The user enters the locations between which the goods are to be transported, as you would when using a route planner,” says IML team leader Joachim Kochsiek. “The system calculates different variants to find the optimum solution that fits the specified criterion: costs, time or, in a future version, least environmental burden. It even factors in the time and costs for transshipment.”

Digital maps of road, rail and inland waterway networks can be purchased off the shelf, but the information they provide is not sufficiently detailed for the new software.

“There are different categories of train, and different pricing systems for different rail connections – we can’t apply a standard price per kilometer. We need to know what rules apply to the speed, width and height of trains, how many wagons are permitted on a particular section of railroad, and the maximum speed limit. Whereas this kind of information is included in road maps, it has to be compiled manually for the rail networks,” Kochsiek explains.

For each mode of transportation, the system adapts its calculation of costs and fuel consumption to the degree of capacity utilization. For example, the lower the number of wagons pulled by a locomotive, the higher the costs. A prototype version of the software for optimizing time and costs is already available. The researchers are now working on the algorithms for calculating the environmental burden. A later version with online access will enable modified shipping timetables, for instance, to be instantly included in the calculations.


Story Source:

The above post is reprinted from materials provided by Fraunhofer-Gesellschaft. Note: Materials may be edited for content and length.


Cite This Page:

Fraunhofer-Gesellschaft. "Rail, Road Or Waterway?." ScienceDaily. ScienceDaily, 10 September 2008. <www.sciencedaily.com/releases/2008/09/080908135908.htm>.
Fraunhofer-Gesellschaft. (2008, September 10). Rail, Road Or Waterway?. ScienceDaily. Retrieved July 2, 2015 from www.sciencedaily.com/releases/2008/09/080908135908.htm
Fraunhofer-Gesellschaft. "Rail, Road Or Waterway?." ScienceDaily. www.sciencedaily.com/releases/2008/09/080908135908.htm (accessed July 2, 2015).

Share This Page: