Featured Research

from universities, journals, and other organizations

Better Health Through Your Cell Phone

Date:
September 15, 2008
Source:
University of California - Los Angeles
Summary:
Researchers have advanced a novel lens-free imaging technique on the path to use in medical diagnostic applications that promise to improve global health related disease monitoring, such as malaria and HIV. The on-chip imaging platform is capable of quickly and accurately counting targeted cell types in a mixed cell solution. Eventually, the platform will be scaled down to the point that it can be integrated within a regular wireless cell phone.

In many Third World and developing countries, the distance between people in need of health care and the facilities capable of providing it constitutes a major obstacle to improving health. One solution involves creating medical diagnostic applications small enough to fit into objects already in common use, such as cell phones — in effect, bringing the hospital to the patient.

Related Articles


UCLA researchers have advanced a novel lens-free, high-throughput imaging technique for potential use in such medical diagnostics, which promise to improve global disease monitoring, especially in resource-limited settings such as in Africa. The research, which will be published in the quarterly journal Cellular and Molecular Bioengineering (CMBE) and is currently available online, outlines improvements to a technique known as LUCAS, or Lensless Ultra-wide-field Cell monitoring Array platform based on Shadow imaging.

First published in the Royal Society of Chemistry's journal Lab Chip in 2007, the LUCAS technique, developed by UCLA researchers, demonstrated a lens-free method for quickly and accurately counting targeted cell types in a homogenous cell solution. Removing the lens from the imaging process allows LUCAS to be scaled down to the point that it can eventually be integrated into a regular wireless cell phone. Samples could be loaded into a specially equipped phone using a disposable microfluidic chip.

The UCLA researchers have now improved the LUCAS technique to the point that it can classify a significantly larger sample volume than previously shown — up to 5 milliliters, from an earlier volume of less than 0.1 ml — representing a major step toward portable medical diagnostic applications.

The research team, led by Aydogan Ozcan, assistant professor of electrical engineering at the UCLA Henry Samueli School of Engineering and Applied Science and a member of the California NanoSystems Institute (CNSI), includes postdoctoral scholar Sungkyu Seo, doctoral student Ting-Wei Su, master's student Derek Tseng and undergraduate Anthony Erlinger.

Ozcan envisions people one day being able to draw a blood sample into a chip the size of a quarter, which could then be inserted into a LUCAS-equipped cell phone that would quickly identify and count the cells within the sample. The read-out could be sent wirelessly to a hospital for further analysis.

"This on-chip imaging platform may have a significant impact, especially for medical diagnostic applications related to global health problems such as HIV or malaria monitoring," Ozcan said.

LUCAS functions as an imaging scheme in which the shadow of each cell in an entire sample volume is detected in less than a second. The acquired shadow image is then digitally processed using a custom-developed "decision algorithm" to enable both the identification of the cell/bacteria location in 3-D and the classification of each microparticle type within the sample volume.

Various cell types — such as red blood cells, fibroblasts and hepatocytes — or other microparticles, such as bacteria, all exhibit uniquely different shadow patterns and therefore can be rapidly identified using the decision algorithm.

The new study demonstrates that the use of narrowband, short-wavelength illumination significantly improves the detection of cell shadow images. Furthermore, by varying the wavelength, the two-dimensional pattern of the recorded cell signatures can be tuned to enable automated identification and counting of a target cell type within a mixed cell solution.

"This is the first demonstration of automated, lens-free counting and characterization of a mixed, or heterogeneous, cell solution on a chip and holds significant promise for telemedicine applications," Ozcan said.

Another improvement detailed in the UCLA research is the creation of a hybrid imaging scheme that combines two different wavelengths to further improve the digital quality of shadow images. This new cell classification scheme has been termed "multicolor LUCAS." As the team illustrated, further improvement in image quality can also be achieved through the use of adaptive digital filtering. As result of these upgrades, the volume of the sample solution that can be imaged has been increased, as mentioned, from less than 0.1 ml to 5 ml.

"This is a significant advance in the quest to bring advanced medical care to all reaches of the planet," said Leonard H. Rome, interim director of the CNSI and senior associate dean for research at the David Geffen School of Medicine at UCLA. "The implications for medical diagnostic applications are in keeping with CNSI initiatives for new advances toward improving global health."

Ozcan has already received accolades for this research, including the 2008 Okawa Foundation Research Award, which he will receive at a ceremony in San Francisco on Oct. 8. The award honors top young researchers working in the fields of information and telecommunications. The CMBE paper has also been selected for the Outstanding Paper award at the upcoming annual meeting of the Biomedical Engineering Society this fall.


Story Source:

The above story is based on materials provided by University of California - Los Angeles. Note: Materials may be edited for content and length.


Cite This Page:

University of California - Los Angeles. "Better Health Through Your Cell Phone." ScienceDaily. ScienceDaily, 15 September 2008. <www.sciencedaily.com/releases/2008/09/080911103946.htm>.
University of California - Los Angeles. (2008, September 15). Better Health Through Your Cell Phone. ScienceDaily. Retrieved December 22, 2014 from www.sciencedaily.com/releases/2008/09/080911103946.htm
University of California - Los Angeles. "Better Health Through Your Cell Phone." ScienceDaily. www.sciencedaily.com/releases/2008/09/080911103946.htm (accessed December 22, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Monday, December 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Christmas Kissing Good for Health

Christmas Kissing Good for Health

Reuters - Innovations Video Online (Dec. 22, 2014) Scientists in Amsterdam say couples transfer tens of millions of microbes when they kiss, encouraging healthy exposure to bacteria. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Brain-Dwelling Tapeworm Reveals Genetic Secrets

Brain-Dwelling Tapeworm Reveals Genetic Secrets

Reuters - Innovations Video Online (Dec. 22, 2014) Cambridge scientists have unravelled the genetic code of a rare tapeworm that lived inside a patient's brain for at least four year. Researchers hope it will present new opportunities to diagnose and treat this invasive parasite. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Touch-Free Smart Phone Empowers Mobility-Impaired

Touch-Free Smart Phone Empowers Mobility-Impaired

Reuters - Innovations Video Online (Dec. 21, 2014) A touch-free phone developed in Israel enables the mobility-impaired to operate smart phones with just a movement of the head. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Earthworms Provide Cancer-Fighting Bacteria

Earthworms Provide Cancer-Fighting Bacteria

Reuters - Innovations Video Online (Dec. 21, 2014) Polish scientists isolate bacteria from earthworm intestines which they say may be used in antibiotics and cancer treatments. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins