Featured Research

from universities, journals, and other organizations

Epilepsy, Autism, Schizophrenia: Master Switch That 'Balances The Brain' Found

Date:
September 25, 2008
Source:
Children's Hospital Boston
Summary:
Neuroscientists have identified the first known "master switch" to orchestrate the formation and maintenance of inhibitory synapses on neurons, essential for proper brain function. The switch, called Npas4, regulates more than 200 genes that calm over-excited cells, restoring a balance that is thought to go askew in neurologic disorders like epilepsy, autism and schizophrenia. Inhibitory connections are also required to launch critical periods, when the brain can readily rewire and learn.

Neuroscientists at Children's Hospital Boston have identified the first known "master switch" in brain cells to orchestrate the formation and maintenance of inhibitory synapses, essential for proper brain function. The factor, called Npas4, regulates more than 200 genes that act in various ways to calm down over-excited cells, restoring a balance that is thought to go askew in some neurologic disorders.

Related Articles


Synapses, the connections between brain cells, can be excitatory or inhibitory in nature. At birth, the rapidly developing brain teems with excitatory synapses, which tend to make nerve cells "fire" and stimulate their neighbors. But if the excitation isn't eventually balanced, it can lead to epilepsy, and diseases like autism and schizophrenia have been associated with an imbalance of excitation and inhibition. The creation of inhibitory connections is also necessary to launch critical periods -- windows of rapid learning during early childhood and adolescence, when the brain is very "plastic" and able to rewire itself.

Npas4 is a transcription factor, a switch that activates or represses other genes. The researchers, led by Michael Greenberg, PhD, director of the Neurobiology Program at Children's, demonstrated that the activity of as many as 270 genes changes when Npas4 activity is blocked in a cell, and that Npas4 activation is associated with an increased number of inhibitory synapses on the cell's surface.

The team further showed that Npas4 is activated by excitatory synaptic activity. "Excitation turns on a program that says, 'this cell is getting excited, we need to balance that with inhibition,'" explains Greenberg, who now also chairs the Department of Neurobiology at Harvard Medical School.

Finally, the researchers bred live mice that lacked Npas4, and found evidence of neurologic problems – the mice appeared anxious and hyperactive and were prone to seizures.

Greenberg and colleagues are now trying to learn more about the wide variety of genes that Npas4 regulates, each of which could give clues to synapse development and reveal new treatment possibilities for neurologic disorders. "If you have your hand on a transcription factor such as Npas4, new genome-wide technology allows you to essentially identify every target of the transcription factor," says Greenberg. One such target is neurotrophic factor (BDNF), which Greenberg and colleagues previously showed to regulate the maturation and function of inhibitory synapses.

Children's researchers Takao Hensch, PhD, and Michela Fagiolini, PhD, also in the Neurobiology program, plan to study the Npas4-lacking mice to see if they have abnormalities in the initiation of critical periods; colleague Chinfei Chen, MD, PhD, will also study the mice, further probing how their synapses develop.

The study was supported by the F.M. Kirby Foundation, the Nancy Lurie Marks Family Foundation, the Lefler Foundation and the National Institutes of Health. Yingxi Lin, PhD, was first author.


Story Source:

The above story is based on materials provided by Children's Hospital Boston. Note: Materials may be edited for content and length.


Journal Reference:

  1. Yingxi Lin, Brenda L. Bloodgood, Jessica L. Hauser, Ariya D. Lapan, Alex C. Koon, Tae-Kyung Kim, Linda S. Hu, Athar N. Malik, Michael E. Greenberg. Activity-dependent regulation of inhibitory synapse development by Npas4. Nature, 2008; 455 (7217): 1198 DOI: 10.1038/nature07319

Cite This Page:

Children's Hospital Boston. "Epilepsy, Autism, Schizophrenia: Master Switch That 'Balances The Brain' Found." ScienceDaily. ScienceDaily, 25 September 2008. <www.sciencedaily.com/releases/2008/09/080924133428.htm>.
Children's Hospital Boston. (2008, September 25). Epilepsy, Autism, Schizophrenia: Master Switch That 'Balances The Brain' Found. ScienceDaily. Retrieved October 30, 2014 from www.sciencedaily.com/releases/2008/09/080924133428.htm
Children's Hospital Boston. "Epilepsy, Autism, Schizophrenia: Master Switch That 'Balances The Brain' Found." ScienceDaily. www.sciencedaily.com/releases/2008/09/080924133428.htm (accessed October 30, 2014).

Share This



More Health & Medicine News

Thursday, October 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Mind-Controlled Prosthetic Arm Restores Amputee Dexterity

Mind-Controlled Prosthetic Arm Restores Amputee Dexterity

Reuters - Innovations Video Online (Oct. 29, 2014) A Swedish amputee who became the first person to ever receive a brain controlled prosthetic arm is able to manipulate and handle delicate objects with an unprecedented level of dexterity. The device is connected directly to his bone, nerves and muscles, giving him the ability to control it with his thoughts. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Google To Use Nanoparticles, Wearables To Detect Disease

Google To Use Nanoparticles, Wearables To Detect Disease

Newsy (Oct. 29, 2014) Google X wants to improve modern medicine with nanoparticles and a wearable device. It's all an attempt to tackle disease detection and prevention. Video provided by Newsy
Powered by NewsLook.com
Can Drinking Milk Lead To Early Death?

Can Drinking Milk Lead To Early Death?

Newsy (Oct. 29, 2014) Researchers in Sweden released a study showing heavy milk drinkers face an increased mortality risk from a variety of causes. Video provided by Newsy
Powered by NewsLook.com
Obama: The US Will Not 'run and Hide' From Ebola

Obama: The US Will Not 'run and Hide' From Ebola

AP (Oct. 29, 2014) Surrounded by health care workers in the White House East Room, President Barack Obama said the U.S. will likely see additional Ebola cases in the weeks ahead. But he said the nation can't seal itself off in the fight against the disease. (Oct. 29) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



    Save/Print:
    Share:

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile: iPhone Android Web
    Follow: Facebook Twitter Google+
    Subscribe: RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins