Featured Research

from universities, journals, and other organizations

Learning From Mistakes Only Works After Age 12, Study Suggests

Date:
September 27, 2008
Source:
Leiden University
Summary:
Eight-year-old children have a radically different learning strategy from twelve-year-olds. Eight-year-olds learn primarily from positive feedback, whereas negative feedback scarcely causes any alarm bells to ring. Twelve-year-olds are better able to process negative feedback, and use it to learn from their mistakes. The switch in learning strategy can be seen in the brain areas responsible for cognitive control.

In children aged 8 to 9, the areas of the brain involved in cognitive control show strong activation following positive feedback. This is no longer the case with 12-year-olds.
Credit: Image courtesy of Leiden University

Eight-year-old children have a radically different learning strategy from twelve-year-olds and adults. Eight-year-olds learn primarily from positive feedback ('Well done!'), whereas negative feedback ('Got it wrong this time') scarcely causes any alarm bells to ring. Twelve-year-olds are better able to process negative feedback, and use it to learn from their mistakes. Adults do the same, but more efficiently.

Brain areas for cognitive control

The switch in learning strategy has been demonstrated in behavioural research, which shows that eight-year-olds respond disproportionately inaccurately to negative feedback. But the switch can also be seen in the brain, as developmental psychologist Dr Eveline Crone and her colleagues from the Leiden Brain and Cognition Lab discovered using fMRI research. The difference can be observed particularly in the areas of the brain responsible for cognitive control. These areas are located in the cerebral cortex.

Opposite case

In children of eight and nine, these areas of the brain react strongly to positive feedback and scarcely respond at all to negative feedback. But in children of 12 and 13, and also in adults, the opposite is the case. Their 'control centres' in the brain are more strongly activated by negative feedback and much less by positive feedback.

Three-way division

Crone and her colleagues used fMRI research to compare the brains of three different age groups: children of eight to nine years, children of eleven to twelve years, and adults aged between 18 and 25 years. This three-way division had never been made before; the comparison is generally made between children and adults.

Unexpected

Crone herself was surprised at the outcome: 'We had expected that the brains of eight-year-olds would function in exactly the same way as the brains of twelve-year-olds, but maybe not quite so well. Children learn the whole time, so this new knowledge can have major consequences for people wanting to teach children: how can you best relay instructions to eight- and twelve-year-olds?' ’

Ticks and crosses

The researchers gave children of both age groups and adults aged 18 to 25 a computer task while they lay in the MRI scanner. The task required them to discover rules. If they did this correctly, a tick appeared on the screen, otherwise a cross appeared. MRI scans showed which parts of the brain were activated.

Learning in a different way

These surprising results set Crone thinking. 'You start to think less in terms of 'good' and 'not so good'. Children of eight may well be able to learn extremely efficiently, only they do it in a different way.'

Learning from mistakes is complicated

She is able to place her fMRI results within the existing knowledge about child development. 'From the literature, it appears that young children respond better to reward than to punishment.' She can also imagine how this comes about: 'The information that you have not done something well is more complicated than the information that you have done something well. Learning from mistakes is more complex than carrying on in the same way as before. You have to ask yourself what precisely went wrong and how it was possible.'

Is it experience?

Is that difference between eight- and twelve-year-olds the result of experience, or does it have to do with the way the brain develops? As yet, nobody has the answer. 'This kind of brain research has only been possible for the last ten years or so,' says Crone,'and there are a lot more questions which have to be answered. But it is probably a combination of the brain maturing and experience.'

Brain area for positive feedback

There is also an area of the brain that responds strongly to positive feedback: the basal ganglia, just outside the cerebral cortex. The activity of this area of the brain does not change. It remains active in all age groups: in adults, but also in children, both eight-year-olds and twelve-year-olds.


Story Source:

The above story is based on materials provided by Leiden University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Anna C. K. van Duijvenvoorde, Kiki Zanolie, Serge A. R. B. Rombouts, Maartje E. J. Raijmakers, and Eveline A. Crone. Evaluating the Negative or Valuing the Positive? Neural Mechanisms Supporting Feedback-Based Learning across Development. The Journal of Neuroscience, 17 September 2008

Cite This Page:

Leiden University. "Learning From Mistakes Only Works After Age 12, Study Suggests." ScienceDaily. ScienceDaily, 27 September 2008. <www.sciencedaily.com/releases/2008/09/080925104309.htm>.
Leiden University. (2008, September 27). Learning From Mistakes Only Works After Age 12, Study Suggests. ScienceDaily. Retrieved April 20, 2014 from www.sciencedaily.com/releases/2008/09/080925104309.htm
Leiden University. "Learning From Mistakes Only Works After Age 12, Study Suggests." ScienceDaily. www.sciencedaily.com/releases/2008/09/080925104309.htm (accessed April 20, 2014).

Share This



More Mind & Brain News

Sunday, April 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Study On Artists' Brain Shows They're 'Structurally Unique'

Study On Artists' Brain Shows They're 'Structurally Unique'

Newsy (Apr. 17, 2014) The brains of artists aren't really left-brain or right-brain, but rather have extra neural matter in visual and motor control areas. Video provided by Newsy
Powered by NewsLook.com
Is Apathy A Sign Of A Shrinking Brain?

Is Apathy A Sign Of A Shrinking Brain?

Newsy (Apr. 17, 2014) A recent study links apathetic feelings to a smaller brain. Researchers say the results indicate a need for apathy screening for at-risk seniors. Video provided by Newsy
Powered by NewsLook.com
Are School Dress Codes Too Strict?

Are School Dress Codes Too Strict?

AP (Apr. 16, 2014) Pushing the limits on style and self-expression is a rite of passage for teens and even younger kids. How far should schools go with their dress codes? The courts have sided with schools in an era when school safety is paramount. (April 16) Video provided by AP
Powered by NewsLook.com
Could Even Casual Marijuana Use Alter Your Brain?

Could Even Casual Marijuana Use Alter Your Brain?

Newsy (Apr. 16, 2014) A new study conducted by researchers at Northwestern and Harvard suggests even casual marijuana use can alter your brain. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins