Featured Research

from universities, journals, and other organizations

Targeting Space Debris Using Networks

Date:
October 14, 2008
Source:
University of Southampton
Summary:
How to deal with the ever-increasing problem of space debris, poses a major challenge for space agencies, industry and academia around the globe. Now, research suggests a new technique for identifying key pieces of debris that should be targeted for removal from orbit.

Space debris. How to deal with the ever-increasing problem of space debris, poses a major challenge for space agencies, industry and academia around the globe.
Credit: Image courtesy of University of Southampton

How to deal with the ever-increasing problem of space debris poses a major challenge for space agencies, industry and academia around the globe.

Now, research by a team from the University of Southampton's School of Engineering Sciences, suggests a new technique for identifying key pieces of debris that should be targeted for removal from orbit.

Using network theory as a mathematical tool to identify these key pieces of debris, the Southampton team's approach involves looking for objects that might cause damage based on how many potential links they have to other objects. That is, how connected they are in a network. The greater the number of links, the greater the object's potential for causing damage.

The research was presented at the 59th International Astronautical Congress (IAC) in Glasgow this week by Dr Hugh Lewis of the University's School of Engineering Sciences. His presentation was based largely on work by Southampton PhD student, Rebecca Newland.

"The space debris environment can be thought of as a network in which the pieces of debris are connected if there is a possibility of them colliding," explains Rebecca Newland. "Once a network has been built it can be analysed to identify objects that are important to the overall structure of the network.

"To destroy a network it would be necessary to identify and remove those key objects, in the same way that targeting highly connected routers for removal could cripple the internet."

Space debris consists of any man-made object that no longer serves a useful purpose in space. Examples include redundant satellites, used rocket bodies and explosion or erosion fragments. Even small pieces have the potential to cause damage if involved in a collision, as many are travelling at speeds of around 10 kilometres per second.

"Previous modelling studies have suggested that even if no new satellites were launched, the number of objects orbiting the Earth will continue to increase as a result of predicted collisions between existing objects," comments Dr Hugh Lewis.

"For this reason, it is important to identify debris objects at risk of collision when making plans to 'clean-up' space.

"Objects need to be ranked according to the risk they pose so that they may be chosen for removal, and this is what our research aims to do."

Networks have been studied extensively in recent years as there are many that we rely on in everyday life from neural networks to the internet.

The research was undertaken by Dr Hugh Lewis, Rebecca Newland, Dr Graham Swinerd and Arrun Saunders at the University of Southampton.


Story Source:

The above story is based on materials provided by University of Southampton. Note: Materials may be edited for content and length.


Cite This Page:

University of Southampton. "Targeting Space Debris Using Networks." ScienceDaily. ScienceDaily, 14 October 2008. <www.sciencedaily.com/releases/2008/10/081013112443.htm>.
University of Southampton. (2008, October 14). Targeting Space Debris Using Networks. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/2008/10/081013112443.htm
University of Southampton. "Targeting Space Debris Using Networks." ScienceDaily. www.sciencedaily.com/releases/2008/10/081013112443.htm (accessed July 28, 2014).

Share This




More Space & Time News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

This Week @ NASA, July 25, 2014

This Week @ NASA, July 25, 2014

NASA (July 25, 2014) Apollo 11 celebration, Next Giant Leap anticipation, ISS astronauts appear in the House and more... Video provided by NASA
Powered by NewsLook.com
Space to Ground: Coming and Going

Space to Ground: Coming and Going

NASA (July 25, 2014) One station cargo ship leaves, another arrives, aquatic research and commercial spinoffs. Questions or comments? Use #spacetoground to talk to us. Video provided by NASA
Powered by NewsLook.com
How A Solar Flare Could Have Wrecked Earth's Electronics

How A Solar Flare Could Have Wrecked Earth's Electronics

Newsy (July 25, 2014) Researchers say if Earth had been a week earlier in its orbit around the sun, it would have taken a direct hit from a 2012 coronal mass ejection. Video provided by Newsy
Powered by NewsLook.com
Raw: ISS Cargo Ship Launches in Kazakhstan

Raw: ISS Cargo Ship Launches in Kazakhstan

AP (July 23, 2014) The Progress 56 cargo ship launched from the Baikonur Cosmodrome in Kazakhstan Wednesday. NASA says it will deliver cargo and crew supplies to the International Space Station. (July 23) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins