Featured Research

from universities, journals, and other organizations

Biologists Discover Gene Behind 'Plant Sex Mystery'

Date:
October 23, 2008
Source:
University of Leicester
Summary:
An enigma -- unique to flowering plants -- has been solved by researchers from the UK and South Korea. Scientists already knew that flowering plants require not one, but two sperm cells for successful fertilisation. The mystery of this 'double fertilization' process was how each single pollen grain could produce 'twin' sperm cells.

The image shows two pollen grains viewed by fluorescence microscopy. A pair of red sperm cells are visible in the normal pollen grain (top left) whilst only one red germ cell is present in mutant pollen (bottom right). The sperm cells are visualized using the monomeric red fluorescent protein mRFP1 derived from a coral species.
Credit: Lynette Brownfield and David Twell, University of Leicester

An enigma – unique to flowering plants – has been solved by researchers from the University of Leicester (UK) and POSTECH, South Korea.

The discovery is reported in the journal Nature on 23 October 2008.

Scientists already knew that flowering plants, unlike animals require not one, but two sperm cells for successful fertilisation.

The mystery of this 'double fertilization' process was how each single pollen grain could produce 'twin' sperm cells. One to join with the egg cell to produce the embryo, and the other to join with a second cell in the ovary to produce the endosperm, a nutrient-rich tissue, inside the seed.

Double fertilisation is essential for fertility and seed production in flowering plants so increased understanding of the process is important.

Now Professor David Twell, of the Department of Biology at the University of Leicester and Professor Hong Gil Nam of POSTECH, South Korea report the discovery of a gene that has a critical role in allowing precursor reproductive cells to divide to form twin sperm cells.

Professor Twell said: "This collaborative project has produced results that unlock a key element in a botanical puzzle.

The key discovery is that this gene, known as FBL17, is required to trigger the destruction of another protein that inhibits cell division. The FBL17 gene therefore acts as a switch within the young pollen grain to trigger precursor cells to divide into twin sperm cells.

"Plants with a mutated version of this gene produce pollen grains with a single sperm cell instead of the pair of sperm that are required for successful double fertilization.

"Interestingly, the process employed by plants to control sperm cell reproduction was found to make use of an ancient mechanism found in yeast and in animals involving the selective destruction of inhibitor proteins that otherwise block the path to cell division.

"Removal of these blocks promotes the production of a twin sperm cell cargo in each pollen grain and thus ensures successful reproduction in flowering plants.

"This discovery is a significant step forward in uncovering the mysteries of flowering plant reproduction. This new knowledge will be useful in understanding the evolutionary origins of flowering plant reproduction and may be used by plant breeders to control crossing behaviour in crop plants.

"In the future such information may become increasingly important as we strive to breed superior crops that maintain yield in a changing climate. Given that flowering plants dominate the vegetation of our planet and that we are bound to them for our survival, it is heartening that we are one step closer to understanding their reproductive secrets."

Researchers at the University of Leicester are continuing their investigation into plant reproduction. Further research underway in Professor Twell's laboratory is already beginning to reveal the answers to secrets about how the pair of sperm cells produced within each pollen grain aquires the ability to fertilize.

Prof Twell's work, in the Department of Biology at the University of Leicester is financially supported by the UK Biotechnology and Biological Research Council (BBSRC).


Story Source:

The above story is based on materials provided by University of Leicester. Note: Materials may be edited for content and length.


Cite This Page:

University of Leicester. "Biologists Discover Gene Behind 'Plant Sex Mystery'." ScienceDaily. ScienceDaily, 23 October 2008. <www.sciencedaily.com/releases/2008/10/081022135427.htm>.
University of Leicester. (2008, October 23). Biologists Discover Gene Behind 'Plant Sex Mystery'. ScienceDaily. Retrieved April 24, 2014 from www.sciencedaily.com/releases/2008/10/081022135427.htm
University of Leicester. "Biologists Discover Gene Behind 'Plant Sex Mystery'." ScienceDaily. www.sciencedaily.com/releases/2008/10/081022135427.htm (accessed April 24, 2014).

Share This



More Space & Time News

Thursday, April 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Nuclear-Level Asteroids Might Be More Common Than We Realize

Nuclear-Level Asteroids Might Be More Common Than We Realize

Newsy (Apr. 23, 2014) The B612 Foundation says asteroids strike Earth much more often than previously thought, and are hoping to build an early warning system. Video provided by Newsy
Powered by NewsLook.com
NASA Chief Outlines Plan for Human Mission to Mars

NASA Chief Outlines Plan for Human Mission to Mars

AFP (Apr. 22, 2014) NASA administrator Charles Bolden, speaking at the 'Human to Mars Summit' in Washington, says that learning more about the Red Planet can help answer the 'fundamental question' of 'life beyond Earth'. Duration: 00:48 Video provided by AFP
Powered by NewsLook.com
Nasa Gives You An Excuse to Post a Selfie on Earth Day

Nasa Gives You An Excuse to Post a Selfie on Earth Day

TheStreet (Apr. 22, 2014) NASA is inviting all social media users to take a selfie of themselves alongside nature and to post it to Twitter, Facebook, Flickr, Instagram, or Google Plus with the hashtag #globalselfie. NASA's goal is to crowd-source a collection of snapshots of the earth, ground-up, that will be used to create one "unique mosaic of the Blue Marble." This image will be available to all in May. Since this is probably one of the few times posting a selfie to Twitter won't be embarrassing, we suggest you give it a go for a good cause. Video provided by TheStreet
Powered by NewsLook.com
SpaceX's Dragon Spacecraft Captured by International Space Station

SpaceX's Dragon Spacecraft Captured by International Space Station

Reuters - US Online Video (Apr. 20, 2014) SpaceX's unmanned Dragon spacecraft makes a scheduled Easter Sunday rendezvous with the International Space Station. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins