Featured Research

from universities, journals, and other organizations

Brain Stimulation Improves Dexterity

Date:
November 3, 2008
Source:
BMC Neuroscience
Summary:
Applying electrical stimulation to the scalp and the underlying motor regions of the brain could make you more skilled at delicate tasks. Research in the journal BMC Neuroscience shows that a non-invasive brain-stimulation technique, transcranial direct current stimulation, is able to improve the use of a person's non-dominant hand.

Applying electrical stimulation to the scalp and the underlying motor regions of the brain could make you more skilled at delicate tasks. New research shows that a non-invasive brain-stimulation technique, transcranial direct current stimulation (tDCS), is able to improve the use of a person's non-dominant hand.

Drs. Gottfried Schlaug and Bradley Vines from Beth Israel Deaconess Medical Center and Harvard Medical School, tested the effects of using tDCS over one side or both sides of the brain on sixteen healthy, right-handed volunteers, as well as testing the effect of simply pretending to carry out the procedure. The volunteers were not aware of which of the three procedures they were receiving. The test involved using the fingers of the left hand to key in a series of numbers displayed on a computer screen.

The results were striking; stimulating the brain over both the right and left motor regions ('dual hemisphere' tDCS) resulted in a 24% improvement in the subjects' scores. This was significantly better than stimulating the brain only over one motor region or using the sham treatment (16% and 12% improvements, respectively).

tDCS involves attaching electrodes to the scalp and passing a weak direct current through the scalp and skull to alter the excitability of the underlying brain tissue. The treatment has two principal modes depending on the direction in which the current runs between the two electrodes. Brain tissue that underlies the positive electrode (anode) becomes more excitable and the reverse is true for brain tissue that underlies the negative electrode (cathode). No relevant negative side effects have been reported with this type of non-invasive brain stimulation. It is not to be confused with electroconvulsive therapy, which uses currents around a thousand times higher.

According to Schlaug, "The results of our study are relevant to clinical research on motor recovery after stroke. They point to the possibility that stimulating both sides of the brain simultaneously, using the effects of the direct current to block unwanted effects of one motor region while using the opposite effects of the direct current treatment on the other motor region to enhance and facilitate the function of that motor region might catalyze motor recovery".


Story Source:

The above story is based on materials provided by BMC Neuroscience. Note: Materials may be edited for content and length.


Journal Reference:

  1. Bradley W Vines, Carlo Cerruti and Gottfried Schlaug. Dual-hemisphere tDCS facilitates greater improvements for healthy subjects' non-dominant hand compared to uni-hemisphere stimulation. BMC Neuroscience, (in press)

Cite This Page:

BMC Neuroscience. "Brain Stimulation Improves Dexterity." ScienceDaily. ScienceDaily, 3 November 2008. <www.sciencedaily.com/releases/2008/10/081027195720.htm>.
BMC Neuroscience. (2008, November 3). Brain Stimulation Improves Dexterity. ScienceDaily. Retrieved April 18, 2014 from www.sciencedaily.com/releases/2008/10/081027195720.htm
BMC Neuroscience. "Brain Stimulation Improves Dexterity." ScienceDaily. www.sciencedaily.com/releases/2008/10/081027195720.htm (accessed April 18, 2014).

Share This



More Mind & Brain News

Friday, April 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Study On Artists' Brain Shows They're 'Structurally Unique'

Study On Artists' Brain Shows They're 'Structurally Unique'

Newsy (Apr. 17, 2014) The brains of artists aren't really left-brain or right-brain, but rather have extra neural matter in visual and motor control areas. Video provided by Newsy
Powered by NewsLook.com
Is Apathy A Sign Of A Shrinking Brain?

Is Apathy A Sign Of A Shrinking Brain?

Newsy (Apr. 17, 2014) A recent study links apathetic feelings to a smaller brain. Researchers say the results indicate a need for apathy screening for at-risk seniors. Video provided by Newsy
Powered by NewsLook.com
Are School Dress Codes Too Strict?

Are School Dress Codes Too Strict?

AP (Apr. 16, 2014) Pushing the limits on style and self-expression is a rite of passage for teens and even younger kids. How far should schools go with their dress codes? The courts have sided with schools in an era when school safety is paramount. (April 16) Video provided by AP
Powered by NewsLook.com
Could Even Casual Marijuana Use Alter Your Brain?

Could Even Casual Marijuana Use Alter Your Brain?

Newsy (Apr. 16, 2014) A new study conducted by researchers at Northwestern and Harvard suggests even casual marijuana use can alter your brain. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins