Featured Research

from universities, journals, and other organizations

Clues To Planets' Birth Discovered In Meteorites

Date:
October 31, 2008
Source:
Massachusetts Institute of Technology
Summary:
Meteorites that are among the oldest rocks ever found have provided new clues about the conditions that existed at the beginning of the solar system, solving a longstanding mystery and overturning some accepted ideas about the way planets form.

A picture of the first discovered (and therefore eponymous) angrite "Angra dos Reis"; which was observed to fall from the sky in 1869 near the town of Angra dos Reis in Brazil. The black; shiny face was produced from melting of the meteorite's surface during passage through Earth's atmosphere. Scale bar is in centimeters.
Credit: Photo courtesy / Maria Zucolotto (Museu Nacional; Brasil)

Meteorites that are among the oldest rocks ever found have provided new clues about the conditions that existed at the beginning of the solar system, solving a longstanding mystery and overturning some accepted ideas about the way planets form.

The ancient meteorites, like disk drives salvaged from an ancient computer, still contain magnetic records about the very early history of planets, according to research by MIT planetary scientist Benjamin P. Weiss.

Weiss, the Victor P. Starr Career Development Assistant Professor of Planetary Sciences in the Department of Earth, Atmospheric and Planetary Sciences, and his five co-authors examined pieces of three meteorites called angrites, which are among the most ancient rocks known. The results of their study are being published in Science on Oct. 31.

The analysis showed that surprisingly, during the formation of the solar system, when dust and rubble in a disk around the sun collided and stuck together to form ever-larger rocks and eventually the planets we know today, even objects much smaller than planets — just 160 kilometers across or so — were large enough to melt almost completely.

This total melting of the planet-forming chunks of rock, called planetesimals, caused their constituents to separate out, with lighter materials including silicates floating to the surface and eventually forming a crust, while heavier iron-rich material sank down to the core, where it began swirling around to produce a magnetic dynamo. The researchers were able to study traces of the magnetic fields produced by that dynamo, now recorded in the meteorites that fell to Earth.

"The magnetism in meteorites has been a longstanding mystery," Weiss said, and the realization that such small bodies could have melted and formed magnetic dynamos is a major step toward solving that riddle.

Until relatively recently, it was commonly thought that the planetesimals — similar to the asteroids seen in the solar system today — that came together to build planets were "just homogenous, unmelted rocky material, with no large-scale structure," Weiss said. "Now we're realizing that many of the things that were forming planets were mini-planets themselves, with crusts and mantles and cores."

That could change theorists' picture of how the planets themselves took shape. If the smaller bodies were already molten as they slammed together to build up larger planet-sized bodies, that could "significantly change our understanding" of the processes that took place in the early years of the nascent planets, as their internal structures were forming, Weiss said. This could have implications for how different minerals are distributed in the Earth's crust, mantle and core today, for example.

"In the last five or 10 years," Weiss said, "our understanding of the early history of the solar system has undergone a sort of mini-revolution, driven by analytical advances in geochemistry. In this study we used a geophysical technique to independently test many of these new ideas. "

"Events happened surprisingly fast at the beginning of the solar system," he said. Some of the angrite meteorites in this study formed just 3 million years after the birth of the solar system itself, 4,568 million years ago, and show signs that their parent body had a magnetic field that was 20 to 40 percent as strong as Earth's today. "We are used to thinking of dynamo magnetic fields in rocky bodies as uncommon phenomena today. But it may be that short-lived planetesimal dynamos were widespread in the early solar system."

The paper was co-authored by Mitsui Career Development Assistant Professor of Geology Linda Elkins-Tanton, research scientist Eduardo A. Lima, postdoctoral researcher Laurent Carpozen, student James S. Berdahl, and Sabine Stanley, assistant professor of physics at the University of Toronto. The work was supported by a grant from the National Science Foundation's Instrumentation and Facilities Program.


Story Source:

The above story is based on materials provided by Massachusetts Institute of Technology. Note: Materials may be edited for content and length.


Cite This Page:

Massachusetts Institute of Technology. "Clues To Planets' Birth Discovered In Meteorites." ScienceDaily. ScienceDaily, 31 October 2008. <www.sciencedaily.com/releases/2008/10/081030144626.htm>.
Massachusetts Institute of Technology. (2008, October 31). Clues To Planets' Birth Discovered In Meteorites. ScienceDaily. Retrieved October 20, 2014 from www.sciencedaily.com/releases/2008/10/081030144626.htm
Massachusetts Institute of Technology. "Clues To Planets' Birth Discovered In Meteorites." ScienceDaily. www.sciencedaily.com/releases/2008/10/081030144626.htm (accessed October 20, 2014).

Share This



More Space & Time News

Monday, October 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Latin America Launches Communications Satellite

Latin America Launches Communications Satellite

AFP (Oct. 17, 2014) Argentina launches a home-built satellite, a first for Latin America. It will ride a French-made Ariane 5 rocket into orbit, and will provide cell phone, digital TV, Internet and data services to the lower half of South America. Duration: 00:41 Video provided by AFP
Powered by NewsLook.com
This Week @ NASA, October 17, 2014

This Week @ NASA, October 17, 2014

NASA (Oct. 17, 2014) Power spacewalk, MAVEN’s “First Light”, Hubble finds extremely distant galaxy and more... Video provided by NASA
Powered by NewsLook.com
Saturn's 'Death Star' Moon Might Have A Hidden Ocean

Saturn's 'Death Star' Moon Might Have A Hidden Ocean

Newsy (Oct. 17, 2014) The smallest of Saturn's main moons, Mimas, wobbles as it orbits. Research reveals it might be due to a global ocean underneath its icy surface. Video provided by Newsy
Powered by NewsLook.com
Comet Set for Rare Close Shave With Mars

Comet Set for Rare Close Shave With Mars

AFP (Oct. 16, 2014) A fast-moving comet is about to shave by Mars for a once-in-a-million-years encounter that a flurry of spacecraft around the Red Planet hope to capture and photograph, NASA said. Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins