Featured Research

from universities, journals, and other organizations

New Laser Method Reproduces Art Masterworks To Protein Patterns

Date:
November 13, 2008
Source:
University of Montreal
Summary:
To illustrate the precision of their protein patterning technique, scientists reproduced a masterwork of Dutch painter Johannes Vermeer, specifically Girl with a Pearl Earring, in the miniature dimension of 200 microns wide or about the thickness of two hairs. The researchers also used their novel technology to replicate the brain's complex cellular environment.

The research team reproduced the masterwork Girl with a Pearl Earring in the miniature dimension of 200 microns wide or about the thickness of two hairs.
Credit: Santiago Costantino, Université de Montréal

Canadian researchers have created a new protein patterning technique that's enabled them to reproduce complex cellular environments and a miniature version of a masterpiece painting.

Related Articles


According to a new study published in the journal Lab on a Chip, scientists from Université de Montréal, the Maisonneuve-Rosemont Hospital Research Centre, McGill University and the Montreal Neurological Institute have developed a laser technology that can mimic the protein patterns that surround cells in vivo and that could lead to great advances in neuroscience.

To illustrate the precision of their protein patterning technique, the research team reproduced a masterwork of Dutch painter Johannes Vermeer, specifically Girl with a Pearl Earring, in the miniature dimension of 200 microns wide or about the thickness of two hairs. The researchers also used their novel technology to replicate the brain's complex cellular environment. It's a major discovery, since the new laser technology can encourage and guide the growth of finicky nerve cells.

"We have created a system that can fabricate complex methods to grow cells," says Santiago Costantino, the study's lead author and a scientist at the Université de Montréal and Maisonneuve-Rosemont Hospital Research Centre.

"We see this technique as being very relevant to neuroscience and immunology research. With this system, we laid down a chemical gradient to guide the growth of nerve fiber, which is very useful in studying nerve damage and repair."

Flexible and precise

Using laser-assisted protein adsorption by photobleaching (LAPAP), the scientific team bound fluorescently-tagged molecules to a glass slides and created patterns of proteins similar to those of the human body. They then demonstrated how flexible and precise this technique could be by reproducing a fluorescent micro version of Girl With a Pearl Earring.

"The flexibility, precision and ease of this technique will hopefully lead to increased access in protein patterning, which could lead to major advances in science," says Dr. Costantino, who is also a member of the BioFemtoVision Canadian Research Group, which includes researchers from the Université de Montréal and the Institut National de la Recherche Scientifique who are working on developing new laser technologies for vision science.

"Our next goal is to extend laser-assisted protein adsorption by photobleaching to fabricate more complex protein combinations and distributions," adds Dr. Costantino. "We want to improve our imitation of the chemical environment found in the early stages of developing organisms."

This study was funded through grants from the Natural Science and Engineering Council of Canada, the Fonds québécois de la recherche sur la nature et les technologies, Canadian Institutes of Health Research and the Fonds de la recherche en santé du Québec.


Story Source:

The above story is based on materials provided by University of Montreal. Note: Materials may be edited for content and length.


Journal Reference:

  1. Santiago Costantino, Jonathan M. Bélisle, James P. Correia, Paul W. Wiseman and Timothy E. Kennedy. Patterning protein concentration using laser-assisted adsorption by photobleaching, LAPAP. Lab on a Chip, (in press)

Cite This Page:

University of Montreal. "New Laser Method Reproduces Art Masterworks To Protein Patterns." ScienceDaily. ScienceDaily, 13 November 2008. <www.sciencedaily.com/releases/2008/11/081111130846.htm>.
University of Montreal. (2008, November 13). New Laser Method Reproduces Art Masterworks To Protein Patterns. ScienceDaily. Retrieved April 21, 2015 from www.sciencedaily.com/releases/2008/11/081111130846.htm
University of Montreal. "New Laser Method Reproduces Art Masterworks To Protein Patterns." ScienceDaily. www.sciencedaily.com/releases/2008/11/081111130846.htm (accessed April 21, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Tuesday, April 21, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Humanoid Robot Can Recognise and Interact With People

Humanoid Robot Can Recognise and Interact With People

Reuters - Innovations Video Online (Apr. 20, 2015) — An ultra-realistic humanoid robot called &apos;Han&apos; recognises and interprets people&apos;s facial expressions and can even hold simple conversations. Developers Hanson Robotics hope androids like Han could have uses in hospitality and health care industries where face-to-face communication is vital. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Drones and Health Apps at Santiago's "Robotics Day"

Drones and Health Apps at Santiago's "Robotics Day"

AFP (Apr. 20, 2015) — Latin American robotics experts gather in Santiago, Chile for "Robotics Day". Video provided by AFP
Powered by NewsLook.com
Japan Humanoid Robot Receives Customers at Department Store

Japan Humanoid Robot Receives Customers at Department Store

AFP (Apr. 20, 2015) — She can smile, she can sing and she can give you guidance at one of the most upscale department stores in Tokyo...a female-looking humanoid makes her debut as a receptionist Video provided by AFP
Powered by NewsLook.com
Pee-Power Toilet to Light Up Disaster Zones

Pee-Power Toilet to Light Up Disaster Zones

Reuters - Innovations Video Online (Apr. 20, 2015) — Students and staff are being asked to use a prototype urinal to &apos;donate&apos; urine to fuel microbial fuel cell (MFC) stacks that generate electricity to power lighting. The developers hope the pee-power technology will light toilet cubicles in refugee camps, where women are often at risk of assault in poorly lit sanitation areas. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins