Featured Research

from universities, journals, and other organizations

Improved Spectrometer Based On Nonlinear Optics

Date:
November 19, 2008
Source:
Optical Society of America
Summary:
Scientists have created a new highly sensitive infrared spectrometer. The device converts light from the infrared part of the spectrum to the visible part, where the availability of superior optical detectors results in strongly improved sensing capabilities.

Scientists at Stanford University and Japan's National Institute of Informatics have created a new highly sensitive infrared spectrometer. The device converts light from the infrared part of the spectrum to the visible part, where the availability of superior optical detectors results in strongly improved sensing capabilities.

The research will appear in the Nov. 24 issue of Optics Express, the Optical Society's open access journal.

The new spectrometer is 100 times more sensitive than current commercial optical spectrum analyzers used in industrial applications such as optical communication, semiconductor microelectronics and forensic analysis.

Current spectrometers being used on the market today cover a wide spectral range, allow for moderately fast wavelength sweeps, have a good spectral resolution and don't require cryogenic cooling. However, the sensitivity of these instruments is limited, making them unsuitable for capturing single-photon-level spectra at telecommunication wavelengths.

Cryogenic cooling can increase the sensitivity of these devices, yet reduces the usefulness for industrial applications. One possible solution is to up-convert near-infrared to visible light in a nonlinear medium. The up-converted photons can then be detected using a single-photon detector for visible light.

The authors use a single-photon counting module, which results in 100 times better sensitivity. They implemented the frequency conversion via sum-frequency generation in a periodically poled lithium niobate waveguide, which can be thought of as combining two low-energy photons to get one high-energy photon.

Key Findings

  • The up-conversion based spectrometer's sensitivity is 100 times higher compared to current commercial optical spectrum analyzers.
  • Cryogenic cooling is not required for increased sensitivity, making the device practical for a variety of industrial applications.
  • The cost and system complexity of the spectrometer is reduced because it only uses one single-photon detector instead of an array of detectors.

Story Source:

The above story is based on materials provided by Optical Society of America. Note: Materials may be edited for content and length.


Journal Reference:

  1. Qiang Zhang, Carsten Langrock, M. M. Fejer, and Yoshihisa Yamamoto. Waveguide-Based Single-Pixel Up-Conversion Infrared Spectrometer. Optics Express, 2008; 16 (24): 19557-19561 DOI: 10.1364/OE.16.019557

Cite This Page:

Optical Society of America. "Improved Spectrometer Based On Nonlinear Optics." ScienceDaily. ScienceDaily, 19 November 2008. <www.sciencedaily.com/releases/2008/11/081112113705.htm>.
Optical Society of America. (2008, November 19). Improved Spectrometer Based On Nonlinear Optics. ScienceDaily. Retrieved August 21, 2014 from www.sciencedaily.com/releases/2008/11/081112113705.htm
Optical Society of America. "Improved Spectrometer Based On Nonlinear Optics." ScienceDaily. www.sciencedaily.com/releases/2008/11/081112113705.htm (accessed August 21, 2014).

Share This




More Matter & Energy News

Thursday, August 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Flower Power! Dandelions Make Car Tires?

Flower Power! Dandelions Make Car Tires?

Reuters - Business Video Online (Aug. 20, 2014) Forget rolling on rubber, could car drivers soon be traveling on tires made from dandelions? Teams of scientists are racing to breed a type of the yellow flower whose taproot has a milky fluid with tire-grade rubber particles in it. As Joanna Partridge reports, global tire makers are investing millions in research into a new tire source. Video provided by Reuters
Powered by NewsLook.com
Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Newsy (Aug. 19, 2014) Scientists have developed a new device that mimics the way octopuses blend in with their surroundings to hide from dangerous predators. Video provided by Newsy
Powered by NewsLook.com
Researcher Testing on-Field Concussion Scanners

Researcher Testing on-Field Concussion Scanners

AP (Aug. 19, 2014) Four Texas high school football programs are trying out an experimental system designed to diagnose concussions on the field. The technology is in response to growing concern over head trauma in America's most watched sport. (Aug. 19) Video provided by AP
Powered by NewsLook.com
Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

AFP (Aug. 19, 2014) A solar cell that resembles a flower is offering a new take on green energy in Japan, where one scientist is searching for renewables that look good. Duration: 01:29 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins