Featured Research

from universities, journals, and other organizations

Student Achieves Control Of Collagen Nanofibers To Manufacture Synthetic Knee Cartilage

Date:
November 19, 2008
Source:
Universitat Politècnica de Catalunya
Summary:
An engineering student reports on the manufacturing of synthetic cartilage similar to human cartilage, for medical use. Protection of the knee for disabled people with prostheses may be one of the first applications.

The work of Camila Flor, a student at the School of Industrial and Aeronautical Engineering (ETSEIAT), may form the basis for creating, for the first time, synthetic cartilage that is similar to human cartilage and has applications in patients with prostheses.
Credit: Image courtesy of Universitat Politècnica de Catalunya

Camila Flor, a student at the School of Industrial and Aeronautic Engineering of Terrassa, reports on the manufacturing of synthetic cartilage similar to human cartilage, for medical use.* Protection of the knee for disabled people with prostheses may be one of the first applications. The work is part of a macroproject coordinated by the laboratory of Dr. Juan Hinestroza of Cornell University, USA, the creator of bactericidal clothing.

Related Articles


Orienting or controlling nanofibers means arraying them in a particular configuration: in parallel, in a circle, or crossed. The fibers that form the cartilage that protects the knee are aligned in parallel. Orienting collagen nanofibers is an extremely complex task because collagen is a natural polymer that is very difficult to control. Camila Flor, a student at the ETSEIAT (UPC), has achieved this using the electrospinning method.

The results of Camila Flor's work are innovative. The collagen nanofibers are obtained by exposing the collagen to electrical discharges. The collagen is extruded, in the form of a nanofiber thread, through a fine needle and is deposited on an electric collector consisting of two grounded plates. The student placed a nonconductive material between the two conducting plates. The nanofibers aligned on top of each other perfectly in parallel lines between the two conducting plates.

Camila Flor was very cautious when explaining why the nanofibers had behaved in this manner. According to the student, one hypothesis that explains the phenomenon has to do with the ratio of the diameter of the nanofibers to the distance between the two collecting plates on which they are deposited. Flor believes that the smaller the diameter of the nanofibers, the better the results will be, but she insists that this is a working hypothesis that needs to be thoroughly tested.

How to manufacture synthetic cartilage

Until now, creating synthetic cartilage was complex but not impossible. The problem was that it was impossible to imitate the perfection of human cartilage due to the difficulty in orienting the collagen nanofibers; synthetic cartilage was therefore manufactured using gelatinous substances derived from collagen.

The process for creating synthetic cartilage began with processing stem cells. These cells, if processed in the right way, reproduce and transform into any type of cell required by the scientist manipulating them. For this to be possible, the cells must be in an ideal environment. The work carried out by Camila Flor means that the collagen fibers adapt to the configuration of the chondrocytes (cartilage cells) and are made in the ideal environment, in which these chondrocytes grow until they form the desired cartilage.

A Cornell University macroproject

The work by Camila Flor is the result of a final thesis supervised by Dr. Juan Hinestroza of Cornell University, USA, with contributions from Dr. Arun Naik of the UPC's Institute of Textile Research and Industrial Cooperation at the Terrassa Campus, and was carried out within the textile specialization of the Industrial Engineering degree.

* The project is entitled "A Study of the Formation of Collagen Nanofibers using Electrospinning." Camila Flor has dedicated months of research and study to the work, which is part of a macroproject, the objective of which is to manufacture synthetic cartilage for medical uses, such as knee protection for patients with protheses. The project, funded by the Morgan Family Tissue Engineering Fund, is being carried out by the laboratory run by the lecturer and researcher Dr. Juan Hinestroza of Cornell University, USA, and is coordinated by Dr. Ryan Kurby and Dr. Margaret Frey . Two US students—a postdoctoral student and a doctoral student—are taking part in the project by carrying out research on stem cells and the manipulation of different types of polymers. Camila Flor, who recently graduated from the ETSEIAT, has managed to orient collagen fibers—a key step that will allow the project to move forward. The next step of the project will be to create the structure obtained by the UPC student in three dimensions so that work can begin on manufacturing cartilage.


Story Source:

The above story is based on materials provided by Universitat Politècnica de Catalunya. Note: Materials may be edited for content and length.


Cite This Page:

Universitat Politècnica de Catalunya. "Student Achieves Control Of Collagen Nanofibers To Manufacture Synthetic Knee Cartilage." ScienceDaily. ScienceDaily, 19 November 2008. <www.sciencedaily.com/releases/2008/11/081113075959.htm>.
Universitat Politècnica de Catalunya. (2008, November 19). Student Achieves Control Of Collagen Nanofibers To Manufacture Synthetic Knee Cartilage. ScienceDaily. Retrieved March 5, 2015 from www.sciencedaily.com/releases/2008/11/081113075959.htm
Universitat Politècnica de Catalunya. "Student Achieves Control Of Collagen Nanofibers To Manufacture Synthetic Knee Cartilage." ScienceDaily. www.sciencedaily.com/releases/2008/11/081113075959.htm (accessed March 5, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Thursday, March 5, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Bupa Eyes India Healthcare Opportunities

Bupa Eyes India Healthcare Opportunities

Reuters - Business Video Online (Mar. 5, 2015) — Bupa is hoping to expand in India&apos;s fast-growing health insurance market, once a rule change on foreign investment is implemented. The British private healthcare group&apos;s CEO tells Grace Pascoe why it&apos;s so keen on the new opportunity. Video provided by Reuters
Powered by NewsLook.com
Doctor in Your Pocket Is Getting Smarter

Doctor in Your Pocket Is Getting Smarter

Reuters - Business Video Online (Mar. 5, 2015) — Mobile apps are turning smartphones into a personal doctors, with users able to measure heart rate, blood pressure and even blood sugar. But will it change our behaviour? Ivor Bennett reports from the Mobile World Congress in Barcelona. Video provided by Reuters
Powered by NewsLook.com
AbbVie Inks $21B Deal To Buy Cancer Drugmaker Pharmacyclics

AbbVie Inks $21B Deal To Buy Cancer Drugmaker Pharmacyclics

Newsy (Mar. 5, 2015) — AbbVie announced Wednesday it will buy cancer drugmaker Pharmacyclics in a $21 billion deal. Video provided by Newsy
Powered by NewsLook.com
Adults Only Get The Flu Twice A Decade, Researchers Say

Adults Only Get The Flu Twice A Decade, Researchers Say

Newsy (Mar. 4, 2015) — Researchers found adults only get the flu about once every five years. Scientists analyzed how a person&apos;s immunity builds up over time as well. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins