Featured Research

from universities, journals, and other organizations

Researchers Make New Electronics -- With A Twist

Date:
November 21, 2008
Source:
Northwestern University
Summary:
Scientists have made electronics that can bend. They've made electronics that can stretch. And now, they've reached the ultimate goal -- electronics that can be subjected to any complex deformation, including twisting. Researchers have improved their so-called "pop-up" technology to create circuits that can be twisted. Such electronics could be used in places where flat, unbending electronics would fail, like on the human body.

An optical image of an electronic device in a complex deformation mode.
Credit: Image courtesy of Northwestern University

They've made electronics that can bend. They've made electronics that can stretch.

Related Articles


And now, they've reached the ultimate goal -- electronics that can be subjected to any complex deformation, including twisting.

Yonggang Huang, Joseph Cummings Professor of Civil and Environmental Engineering and Mechanical Engineering at Northwestern University's McCormick School of Engineering and Applied Science, and John Rogers, the Flory-Founder Chair Professor of Materials Science and Engineering at the University of Illinois at Urbana-Champaign, have improved their so-called "pop-up" technology to create circuits that can be twisted. Such electronics could be used in places where flat, unbending electronics would fail, like on the human body.

Their research is published online by the Proceedings of the National Academy of Sciences.

Electronic components historically have been flat and unbendable because silicon, the principal component of all electronics, is brittle and inflexible. Any significant bending or stretching renders an electronic device useless.

Huang and Rogers developed a method to fabricate stretchable electronics that increases the stretching range (as much as 140 percent) and allows the user to subject circuits to extreme twisting. This emerging technology promises new flexible sensors, transmitters, new photovoltaic and microfluidic devices, and other applications for medical and athletic use.

The partnership -- where Huang focuses on theory, and Rogers focuses on experiments -- has been fruitful for the past several years. Back in 2005, the pair developed a one-dimensional, stretchable form of single-crystal silicon that could be stretched in one direction without altering its electrical properties; the results were published by the journal Science in 2006. Earlier this year they made stretchable integrated circuits, work also published in Science.

Next, the researchers developed a new kind of technology that allowed circuits to be placed on a curved surface. That technology used an array of circuit elements approximately 100 micrometers square that were connected by metal "pop-up bridges."

The circuit elements were so small that when placed on a curved surface, they didn't bend -- similar to how buildings don't bend on the curved Earth. The system worked because these elements were connected by metal wires that popped up when bent or stretched. The research was the cover article in Nature in early August.

In the research reported in PNAS, Huang and Rogers took their pop-up bridges and made them into an "S" shape, which, in addition to bending and stretching, have enough give that they can be twisted as well.

"For a lot of applications related to the human body -- like placing a sensor on the body -- an electronic device needs not only to bend and stretch but also to twist," said Huang. "So we improved our pop-up technology to accommodate this. Now it can accommodate any deformation."

Huang and Rogers now are focusing their research on another important application of this technology: solar panels. The pair published a cover article in Nature Materials this month describing a new process of creating very thin silicon solar cells that can be combined in flexible and transparent arrays.


Story Source:

The above story is based on materials provided by Northwestern University. Note: Materials may be edited for content and length.


Cite This Page:

Northwestern University. "Researchers Make New Electronics -- With A Twist." ScienceDaily. ScienceDaily, 21 November 2008. <www.sciencedaily.com/releases/2008/11/081119171324.htm>.
Northwestern University. (2008, November 21). Researchers Make New Electronics -- With A Twist. ScienceDaily. Retrieved October 24, 2014 from www.sciencedaily.com/releases/2008/11/081119171324.htm
Northwestern University. "Researchers Make New Electronics -- With A Twist." ScienceDaily. www.sciencedaily.com/releases/2008/11/081119171324.htm (accessed October 24, 2014).

Share This



More Matter & Energy News

Friday, October 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

IKEA Desk Converts From Standing to Sitting With One Button

IKEA Desk Converts From Standing to Sitting With One Button

Buzz60 (Oct. 24, 2014) IKEA is out with a new convertible desk that can convert from a sitting desk to a standing one with just the push of a button. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com
Ebola Protective Suits Being Made in China

Ebola Protective Suits Being Made in China

AFP (Oct. 24, 2014) A factory in China is busy making Ebola protective suits for healthcare workers and others fighting the spread of the virus. Duration: 00:38 Video provided by AFP
Powered by NewsLook.com
Real-Life Transformer Robot Walks, Then Folds Into a Car

Real-Life Transformer Robot Walks, Then Folds Into a Car

Buzz60 (Oct. 24, 2014) Brave Robotics and Asratec teamed with original Transformers toy company Tomy to create a functional 5-foot-tall humanoid robot that can march and fold itself into a 3-foot-long sports car. Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com
Police Testing New Gunfire Tracking Technology

Police Testing New Gunfire Tracking Technology

AP (Oct. 24, 2014) A California-based startup has designed new law enforcement technology that aims to automatically alert dispatch when an officer's gun is unholstered and fired. Two law enforcement agencies are currently testing the technology. (Oct. 24) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins