Featured Research

from universities, journals, and other organizations

'Deranged Calcium Signaling' Contributes To Neurological Disorder

Date:
December 1, 2008
Source:
UT Southwestern Medical Center
Summary:
Defective calcium metabolism in nerve cells may play a major role in a fatal genetic neurological disorder that resembles Huntington's disease, researchers have found in a mouse study.

Defective calcium metabolism in nerve cells may play a major role in a fatal genetic neurological disorder that resembles Huntington's disease, researchers at UT Southwestern Medical Center have found in a mouse study.

The disease, called spinocerebellar ataxia 3 – also known as SCA3, or Machado-Joseph disease – is a genetic disorder that, like Huntington's, impairs coordination, speech, and vision and causes brain atrophy. Although rare, the condition is one of the most common inherited forms of ataxia and most frequently affects people of Portuguese descent.

The UT Southwestern researchers previously had found that calcium flow within nerve cells is disrupted in Huntington's disease. The latest findings, appearing in the Nov. 26 issue of the Journal of Neuroscience, suggest that SCA3, which is caused by a genetic defect similar to the one found in Huntington's, involves the same "deranged calcium signaling," researchers said.

Both SCA3 and Huntington's are caused by repeating segments of DNA, although the repeats associated with each disease appear in different genes that code for different proteins. The genetic mutations cause repeated units of the amino acid glutamine to appear in the respective proteins. The more repeats there are, the earlier the onset of the disease.

In Huntington's disease the mutated protein is Huntingtin; in SCA3 it is ataxin-3.

The researchers determined that the mutant human ataxin-3 activates a molecule that acts as a channel in the membrane of a sequestered chamber inside cells called the endoplasmic reticulum, or ER. The channel then releases calcium into the cell as a whole. Normal ataxin-3 did not activate the channel or cause calcium release.

The researchers also found that cells from a person with SCA3 showed abnormally high levels of calcium release when treated with bradykinin, a substance that also activates the calcium channel.

Such abnormal calcium release is toxic to cells and results in impaired motor function, said Dr. Ilya Bezprozvanny, professor of physiology at UT Southwestern and senior author of the study. "We're generalizing the idea of calcium toxicity for this group of diseases, which are called polyglutamine expansion disorders," he said.

The researchers also studied mice that had been genetically engineered to overexpress the human ataxin-3 protein containing excessive glutamine repeats. The mutant mice performed poorly on tests of motor coordination compared with normal mice and displayed age-dependent neuronal loss in the same brain regions that are affected in SCA3 patients.

To test whether blocking calcium release would alleviate symptoms in the mice, the researchers treated them for a year with dantrolene, a drug that blocks excessive calcium release from the ER in skeletal muscle cells. Dantrolene is approved for use in humans as a one-time emergency treatment for a reaction to anesthesia.

Treatment with dantrolene improved the coordination of the mutant mice and slowed brain atrophy.

Dantrolene is not suitable for long-term use in humans, however, because of side effects that can potentially harm the liver and the heart and cause neurological problems, said Dr. Bezprozvanny.

"The take-home message is not so much that dantrolene is the solution for treating SCA3, but that this shows a direction for research into a better drug to block similar targets with fewer side effects," Dr. Bezprozvanny said.

The researchers now are studying whether blocking calcium release from the endoplasmic reticulum also can improve function in mouse models of Huntington's and other neurodegenerative diseases such as spinocerebellar ataxia type 2 and Alzheimer's disease.

Other UT Southwestern researchers involved in the study were Dr. Xi Chen, postdoctoral researcher in physiology; Dr. Tie-Shan Tang, instructor of physiology; Dr. Huiping Tu, former instructor of physiology; graduate student Omar Nelson; and Dr. Robert Hammer, professor of biochemistry. Researchers from Brunel University in London and RIKEN Brain Science Institute in Japan also participated.

The study was funded by the National Institutes of Health, the Robert A. Welch Foundation, the McKnight Endowment Fund for Neuroscience, the National Ataxia Foundation, Ataxia UK, Ataxia MJD Research Project Inc. and MEXT of Japan.


Story Source:

The above story is based on materials provided by UT Southwestern Medical Center. Note: Materials may be edited for content and length.


Cite This Page:

UT Southwestern Medical Center. "'Deranged Calcium Signaling' Contributes To Neurological Disorder." ScienceDaily. ScienceDaily, 1 December 2008. <www.sciencedaily.com/releases/2008/11/081126091539.htm>.
UT Southwestern Medical Center. (2008, December 1). 'Deranged Calcium Signaling' Contributes To Neurological Disorder. ScienceDaily. Retrieved October 21, 2014 from www.sciencedaily.com/releases/2008/11/081126091539.htm
UT Southwestern Medical Center. "'Deranged Calcium Signaling' Contributes To Neurological Disorder." ScienceDaily. www.sciencedaily.com/releases/2008/11/081126091539.htm (accessed October 21, 2014).

Share This



More Health & Medicine News

Tuesday, October 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

CDC Revamps Ebola Guidelines After Criticism

CDC Revamps Ebola Guidelines After Criticism

Newsy (Oct. 21, 2014) The Centers for Disease Control and Prevention have issued new protocols for healthcare workers interacting with Ebola patients. Video provided by Newsy
Powered by NewsLook.com
WHO: Ebola Vaccine Trials to Start a in January

WHO: Ebola Vaccine Trials to Start a in January

AP (Oct. 21, 2014) Tens of thousands of doses of experimental Ebola vaccines could be available for "real-world" testing in West Africa as soon as January as long as they are deemed safe in soon to start trials, the World Health Organization said Tuesday. (Oct. 21) Video provided by AP
Powered by NewsLook.com
First-Of-Its-Kind Treatment Gives Man Ability To Walk Again

First-Of-Its-Kind Treatment Gives Man Ability To Walk Again

Newsy (Oct. 21, 2014) A medical team has for the first time given a man the ability to walk again after transplanting cells from his brain onto his severed spinal cord. Video provided by Newsy
Powered by NewsLook.com
CDC Issues New Ebola Guidelines for Health Workers

CDC Issues New Ebola Guidelines for Health Workers

Reuters - US Online Video (Oct. 21, 2014) The U.S. Centers for Disease Control and Prevention has set up new guidelines for health workers taking care of patients infected with Ebola. Linda So reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins