Featured Research

from universities, journals, and other organizations

'The Photon Force Is With Us': Harnessing Light To Drive Nanomachines

Date:
November 28, 2008
Source:
Yale University
Summary:
Science fiction writers have long envisioned sailing a spacecraft by the optical force of the sun's light. But, the forces of sunlight are too weak to fill even the oversized sails that have been tried. Now a team led by researchers at the Yale School of Engineering & Applied Science has shown that the force of light indeed can be harnessed to drive machines when the process is scaled to nano-proportions.

Photonic circuit in which optical force is harnessed to drive nanomechanics.
Credit: Tang/Yale

Science fiction writers have long envisioned sailing a spacecraft by the optical force of the sun's light. But, the forces of sunlight are too weak to fill even the oversized sails that have been tried. Now a team led by researchers at the Yale School of Engineering & Applied Science has shown that the force of light indeed can be harnessed to drive machines — when the process is scaled to nano-proportions.

Their work opens the door to a new class of semiconductor devices that are operated by the force of light. They envision a future where this process powers quantum information processing and sensing devices, as well as telecommunications that run at ultra-high speed and consume little power.

The research, appearing in the November 27 issue of Nature, demonstrates a marriage of two emerging fields of research — nanophotonics and nanomechanics. – which makes possible the extreme miniaturization of optics and mechanics on a silicon chip.

The energy of light has been harnessed and used in many ways. The "force" of light is different — it is a push or a pull action that causes something to move.

"While the force of light is far too weak for us to feel in everyday life, we have found that it can be harnessed and used at the nanoscale," said team leader Hong Tang, assistant professor at Yale. "Our work demonstrates the advantage of using nano-objects as "targets" for the force of light — using devices that are a billion-billion times smaller than a space sail, and that match the size of today's typical transistors."

Until now light has only been used to maneuver single tiny objects with a focused laser beam — a technique called "optical tweezers." Postdoctoral scientist and lead author, Mo Li noted, "Instead of moving particles with light, now we integrate everything on a chip and move a semiconductor device."

"When researchers talk about optical forces, they are generally referring to the radiation pressure light applies in the direction of the flow of light," said Tang. "The new force we have investigated actually kicks out to the side of that light flow."

While this new optical force was predicted by several theories, the proof required state-of-the-art nanophotonics to confine light with ultra-high intensity within nanoscale photonic wires. The researchers showed that when the concentrated light was guided through a nanoscale mechanical device, significant light force could be generated — enough, in fact, to operate nanoscale machinery on a silicon chip.

The light force was routed in much the same way electronic wires are laid out on today's large scale integrated circuits. Because light intensity is much higher when it is guided at the nanoscale, they were able to exploit the force. "We calculate that the illumination we harness is a million times stronger than direct sunlight," adds Wolfram Pernice, a Humboldt postdoctoral fellow with Tang.

"We create hundreds of devices on a single chip, and all of them work," says Tang, who attributes this success to a great optical I/O device design provided by their collaborators at the University of Washington.

It took more than 60 years to progress from the first transistors to the speed and power of today's computers. Creating devices that run solely on light rather than electronics will now begin a similar process of development, according to the authors.

"While this development has brought us a new device concept and a giant step forward in speed, the next developments will be in improving the mechanical aspects of the system. But," says Tang, "the photon force is with us."

Tang's team at Yale also included graduate student Chi Xiong. Collaborators at University of Washington were Thomas Baehr-Jones and Michael Hochberg. Funding in support of the project came from the National Science Foundation, the Air Force Office of Scientific Research and the Alexander von Humboldt post-doctoral fellowship program.

Citation: Nature (November 27, 2008)


Story Source:

The above story is based on materials provided by Yale University. Note: Materials may be edited for content and length.


Cite This Page:

Yale University. "'The Photon Force Is With Us': Harnessing Light To Drive Nanomachines." ScienceDaily. ScienceDaily, 28 November 2008. <www.sciencedaily.com/releases/2008/11/081126133305.htm>.
Yale University. (2008, November 28). 'The Photon Force Is With Us': Harnessing Light To Drive Nanomachines. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/2008/11/081126133305.htm
Yale University. "'The Photon Force Is With Us': Harnessing Light To Drive Nanomachines." ScienceDaily. www.sciencedaily.com/releases/2008/11/081126133305.htm (accessed July 25, 2014).

Share This




More Matter & Energy News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

TSA Administrator on Politics and Flight Bans

TSA Administrator on Politics and Flight Bans

AP (July 24, 2014) TSA administrator, John Pistole's took part in the Aspen Security Forum 2014, where he answered questions on lifting of the ban on flights into Israel's Tel Aviv airport and whether politics played a role in lifting the ban. (July 24) Video provided by AP
Powered by NewsLook.com
Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Algonquin Power Goes Activist on Its Target Gas Natural

Algonquin Power Goes Activist on Its Target Gas Natural

TheStreet (July 23, 2014) When The Deal's Amanda Levin exclusively reported that Gas Natural had been talking to potential suitors, the Ohio company responded with a flat denial, claiming its board had not talked to anyone about a possible sale. Lo and behold, Canadian utility Algonquin Power and Utilities not only had approached the company, but it did it three times. Its last offer was for $13 per share as Gas Natural's was trading at a 60-day moving average of about $12.50 per share. Now Algonquin, which has a 4.9% stake in Gas Natural, has taken its case to shareholders, calling on them to back its proposals or, possibly, a change in the target's board. Video provided by TheStreet
Powered by NewsLook.com
Robot Parking Valet Creates Stress-Free Travel

Robot Parking Valet Creates Stress-Free Travel

AP (July 23, 2014) 'Ray' the robotic parking valet at Dusseldorf Airport in Germany lets travelers to avoid the hassle of finding a parking spot before heading to the check-in desk. (July 23) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile: iPhone Android Web
          Follow: Facebook Twitter Google+
          Subscribe: RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins