Featured Research

from universities, journals, and other organizations

New Explanation For Migration Of Volcanic Activity On Mars

Date:
December 18, 2008
Source:
University of Colorado at Boulder
Summary:
A new study indicates a moving, shell-like plate encapsulating Mars may explain explains the volcanic activity in the Tharsis Rise region of the 'red planet.'

This illustration shows the mechanism by which CU-Boulder Geophysicist Shijie Zhong believes volcanic activity appears to migrate across the surface of Mars. The shell-like outer plate of the planet might be moving, driven by a powerful single plume of hot material affecting an area of thickened crust called the Crustal Dichotomy, thus explaining the migration of volcanic activity in the Tharsis Rise region of Mars.
Credit: Illustration courtesy of Shijie Zhong

Picture a ball. It's an ordinary ball in every way except that it is roughly 4,300 miles in diameter and is moving through the cold of space some 35 million miles from Earth, and hurtling around the sun in just less than two Earth years. This is Mars.

After a first glance at the Martian surface, one may quickly notice two striking global-scale features. The first is the three-mile elevation difference between the northern lowlands and southern highlands, known as the Crustal Dichotomy, which got the name because the highlands and lowlands are underlain by thick and thin crust, respectively. The second feature is the vast area of high elevation with numerous volcanoes near the equator covering a quarter of the Martian surface, known as the Tharsis Rise.

For a moment consider the tectonic plates that make up the crust of the Earth, including the way they move around the planet, rising from below as molten rock and dipping back down under the surface to melt and complete the chain. Earth is the only planet known to scientists that has this mechanism for moving huge sections of the planet's surface great distances. This movement accounts for, among other things, the chain of land masses that form the Hawaiian Islands. As the Pacific Plate moves over a plume of molten rock, the islands formed, one after another.

This is not the case on Mars, which appears to have a single plate that encapsulates the entire planet like the shell of an egg. But Shijie Zhong, associate professor of physics at the University of Colorado at Boulder, thinks this shell-like plate might be moving, driven by a powerful, single plume of hot material affecting the area of the thickened crust of the Crustal Dichotomy. This would explain the migration of volcanic activity in the Tharsis Rise region of the formation of Tharsis, he said.

The possibility of a large-scale, horizontal motion of the outer shell of Mars or similar terrestrial planets and moons has not been previously demonstrated, Zhong said. Using three-dimensional numerical models to simulate the slow churning of Mars' interior in response to the cooling of the planet, Zhong shows in the Dec. 14 issue of Nature Geoscience that a single plume of hot material rising through the planet's interior led to the earliest volcanism in the highlands region of the Crustal Dichotomy, simultaneously triggering rotation of the outer shell. As the shell moved southward over the stationary plume -- like a sheet of cardboard over a candle -- it shifted the location of the volcanism and created the Tharsis Rise.

Zhong said a very specific set of circumstances had to fall into place to get rotation of the outer shell to occur. First, he said an area of thickened crust needed to form on the planet's surface. "It is almost universally accepted that the Crustal Dichotomy with the thickened crust in the highlands formed in the first few hundred million years of Mars' existence, and the Tharsis Rise was only formed a few hundred million years later," said Zhong.

Scientists know this because the Tharsis region is nearly devoid of impact sites, unlike the pockmarked surface of the Crustal Dichotomy. "You don't see so many craters," said Zhong. "It's been resurfaced."

Within this smooth environment, obvious features pop from the surface. Volcanoes, in a straight line, mark the Tharsis Rise. One, Olympus Mons -- a still active volcano -- reaches 15 miles into the Martian sky.

"All the faulting, tectonics and volcanics on Mars in the last 4 billion years happen here, in the Tharsis Rise region," said Zhong.

The second condition is the one-plume convection in the mantle. For the last 10 years, Zhong and his collaborators have studied physical mechanisms for one-plume convection to explain hemispherically asymmetric structures known to have existed for terrestrial planets, including the Crustal Dichotomy and Tharsis Rise on Mars, Supercontinents Pangea and Rodinia on Earth, and mare basalts on the Moon.

Zhong's theory is that a single plume of hot material is jetting from the core of Mars out toward the surface. Where it breaks through, on the Tharsis Rise, it causes volcanoes. But it is the affect that the rising, super-heated material has on the neighboring Crustal Dichotomy's thickened shell that makes the shell of Mars move relative to the underlying mantle and the plume.

"The mechanism I'm describing here is a path to unify the two major features of Mars: the Tharsis Rise and the Crustal Dichotomy," said Zhong.


Story Source:

The above story is based on materials provided by University of Colorado at Boulder. Note: Materials may be edited for content and length.


Cite This Page:

University of Colorado at Boulder. "New Explanation For Migration Of Volcanic Activity On Mars." ScienceDaily. ScienceDaily, 18 December 2008. <www.sciencedaily.com/releases/2008/12/081215121607.htm>.
University of Colorado at Boulder. (2008, December 18). New Explanation For Migration Of Volcanic Activity On Mars. ScienceDaily. Retrieved September 2, 2014 from www.sciencedaily.com/releases/2008/12/081215121607.htm
University of Colorado at Boulder. "New Explanation For Migration Of Volcanic Activity On Mars." ScienceDaily. www.sciencedaily.com/releases/2008/12/081215121607.htm (accessed September 2, 2014).

Share This




More Space & Time News

Tuesday, September 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: NASA Captures Solar Flare

Raw: NASA Captures Solar Flare

AP (Sep. 1, 2014) NASA reported the sun emitted a mid-level solar flare, on August 24th. NASA's Solar Dynamics Observatory captured the images of the flare, which erupted on the left side of the sun. (Sept. 1) Video provided by AP
Powered by NewsLook.com
Space Shuttle Discovery's Legacy, 30 Years Later

Space Shuttle Discovery's Legacy, 30 Years Later

Newsy (Aug. 30, 2014) The space shuttle Discovery launched for the very first time 30 years ago. Here's a look back at its legacy. Video provided by Newsy
Powered by NewsLook.com
Experiment Tests Whether Universe Is Actually A Hologram

Experiment Tests Whether Universe Is Actually A Hologram

Newsy (Aug. 27, 2014) Researchers at Fermilab are using a device called "The Holometer" to test whether our universe is actually a 2-D hologram that just seems 3-D. Video provided by Newsy
Powered by NewsLook.com
SpaceX’s Falcon 9 Rocket Explodes After Liftoff

SpaceX’s Falcon 9 Rocket Explodes After Liftoff

Newsy (Aug. 23, 2014) The private spaceflight company says it is preparing a thorough investigation into Friday's mishap. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins