Featured Research

from universities, journals, and other organizations

Common Soil Mineral Degrades The Nearly Indestructible Prion

Date:
January 16, 2009
Source:
University of Wisconsin-Madison
Summary:
In the rogues' gallery of microscopic infectious agents, the prion is the toughest hombre in town. Warped pathogens that lack both DNA and RNA, prions are believed to cause such fatal brain ailments as chronic wasting disease (CWD) in deer and moose, mad cow disease in cattle, scrapie in sheep and Creutzfeldt-Jakob disease in humans. Now researchers have found that a common soil mineral, an oxidized from of manganese known as birnessite, can penetrate the prion's armor and degrade the protein.

Structure of a portion of the bovine prion protein, a molecule associated with mad cow disease.
Credit: The Protein Data Bank, ID: 1DX0; Lopez-Garcia, F., Zahn, R., Riek, R., Wuthrich, K.: NMR Structure of the Bovine Prion Protein Proc.Nat.Acad.Sci.USA 97 pp. 8334 (2000)

In the rogues' gallery of microscopic infectious agents, the prion is the toughest hombre in town.

Warped pathogens that lack both DNA and RNA, prions are believed to cause such fatal brain ailments as chronic wasting disease (CWD) in deer and moose, mad cow disease in cattle, scrapie in sheep and Creutzfeldt-Jakob disease in humans. In addition to being perhaps the weirdest infectious agent know to science, the prion is also the most durable. It resists almost every method of destruction from fire and ionizing radiation to chemical disinfectants and autoclaving, which reduce prion infectivity but fail to completely eliminate it.

Now, however, a team of Wisconsin researchers has found that a common soil mineral, an oxidized from of manganese known as birnessite, can penetrate the prion's armor and degrade the protein.

The new finding, which was reported earlier this month (Jan. 2) in the Journal of General Virology, is important because it may yield ways to decontaminate soil and other environments where prions reside.

"Prions are resistant to many of the conventional means of inactivating pathogens," says Joel Pedersen, a University of Wisconsin-Madison environmental chemist and the senior author of the new study. For example, autoclaving, a standard method for sterilization in the laboratory, will reduce the concentration of prions in solution, but fails to eliminate them altogether, as it does for virtually all other types of pathogens.

Because prions infect both wild and domesticated animals, the agent can contaminate barnyards and other areas where infected livestock are kept, as well as persist in natural environments where deer, elk and other animals can become infected by contact with contaminated soil.

Other studies have shown that prions can survive in the soil for at least three years, and that soil is a plausible route of transmission for some animals, Pedersen says. "We know that environmental contamination occurs in deer and sheep at least," he notes.

Prion reservoirs in the soil, Pedersen explains, are likely critical links in the chain of infection because the agent does not appear to depend on vectors - intermediate organisms like mosquitoes or ticks - to spread from animal to animal.

That the birnessite family of minerals possessed the capacity to degrade prions was a surprise, Pedersen says. Manganese oxides like birnessite are commonly used in such things as batteries and are among the most potent oxidants occurring naturally in soils, capable of chemically transforming a substance by adding oxygen atoms and stripping away electrons. The mineral is most abundant in soils that are seasonally waterlogged or poorly drained.

"A variety of manganese oxide minerals exist and one of the most common is birnessite. They are common in the sense that you find them in many soils, but in low concentrations," says Pedersen. "They are among the strongest oxidants in soil."

The new study, which was led by Fabio Russo of the University of Naples and Christopher J. Johnson of UW-Madison, was conducted on prions in solution in the laboratory. The group's working hypothesis, according to Pedersen, is that the mineral oxidizes the prion, a chemical process that can be seen in things like iron oxidizing to form rust or how cut pears and apples turn brown when exposed to oxygen.

The next step, Pedersen says, is to mix the mineral with contaminated soil to see if it has the same effect. If it does, birnessite may become a useful tool for cleaning up contaminated farmyards and other places where the prion may be concentrated in the soil.

"I expect that its efficacy would be somewhat diminished in soil," says Pedersen. "It's something we'll explore."

In addition to Pedersen, Russo and Christopher Johnson, co-authors of the new study include Chad J. Johnson of the UW-Madison School of Veterinary Medicine, and Judd Aiken and Debbie McKenzie of the University of Alberta. The work was supported by grants from the National Science Foundation, the U.S. Environmental Protection Agency and the U.S. Department of Defense.


Story Source:

The above story is based on materials provided by University of Wisconsin-Madison. Note: Materials may be edited for content and length.


Cite This Page:

University of Wisconsin-Madison. "Common Soil Mineral Degrades The Nearly Indestructible Prion." ScienceDaily. ScienceDaily, 16 January 2009. <www.sciencedaily.com/releases/2009/01/090114142028.htm>.
University of Wisconsin-Madison. (2009, January 16). Common Soil Mineral Degrades The Nearly Indestructible Prion. ScienceDaily. Retrieved July 29, 2014 from www.sciencedaily.com/releases/2009/01/090114142028.htm
University of Wisconsin-Madison. "Common Soil Mineral Degrades The Nearly Indestructible Prion." ScienceDaily. www.sciencedaily.com/releases/2009/01/090114142028.htm (accessed July 29, 2014).

Share This




More Health & Medicine News

Tuesday, July 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Deadly Ebola Virus Threatens West Africa

Deadly Ebola Virus Threatens West Africa

AP (July 28, 2014) West African nations and international health organizations are working to contain the largest Ebola outbreak in history. It's one of the deadliest diseases known to man, but the CDC says it's unlikely to spread in the U.S. (July 28) Video provided by AP
Powered by NewsLook.com
$15B Deal on Vets' Health Care Reached

$15B Deal on Vets' Health Care Reached

AP (July 28, 2014) A bipartisan deal to improve veterans health care would authorize at least $15 billion in emergency spending to fix a veterans program scandalized by long patient wait times and falsified records. (July 28) Video provided by AP
Powered by NewsLook.com
Two Americans Contract Ebola in Liberia

Two Americans Contract Ebola in Liberia

Reuters - US Online Video (July 28, 2014) Two American aid workers in Liberia test positive for Ebola while working to combat the deadliest outbreak of the virus ever. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Traditional African Dishes Teach Healthy Eating

Traditional African Dishes Teach Healthy Eating

AP (July 28, 2014) Classes are being offered nationwide to encourage African Americans to learn about cooking fresh foods based on traditional African cuisine. The program is trying to combat obesity, heart disease and other ailments often linked to diet. (July 28) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins