Featured Research

from universities, journals, and other organizations

Microbot Motors Fit To Swim Human Arteries

Date:
January 23, 2009
Source:
Institute of Physics
Summary:
A range of complex surgical operations necessary to treat stroke victims, confront hardened arteries or address blockages in the bloodstream are about to be made safer as researchers put the final touches to the design of micro-motors small enough to be injected into the human bloodstream.

Microbot.
Credit: Image courtesy of Institute of Physics

A range of complex surgical operations necessary to treat stroke victims, confront hardened arteries or address blockages in the bloodstream are about to be made safer as researchers from the Micro/Nanophysics Research Laboratory at Australia’s Monash University put the final touches to the design of micro-motors small enough to be injected into the human bloodstream.

A research paper, published in the Journal of Micromechanics and Microengineering, details how researchers are harnessing piezoelectricity, the energy force most commonly used to trigger-start a gas stove, to produce microbot motors just 250 micrometres, a quarter of a millimetre, wide.

Methods of minimally invasive surgery, such as keyhole surgery and a range of operations that utilise catheters, tubes inserted into body cavities to allow surgical manoeuvrability, are preferred by surgeons and patients because of the damage avoided when contrasted against cut and sew operations. Serious damage during minimally invasive surgery is however not always avoidable and surgeons are often limited by, for example, the width of a catheter tube which, in serious cases, can fatally puncture narrow arteries.

Remote controlled miniature robots small enough to swim up arteries could save lives by reaching parts of the body, like a stroke-damaged cranial artery, that catheters have previously been unable to reach (because of the labyrinthine structure of the brain that catheters are too immobile to safely reach). With the right sensor equipment attached to the microbot motor, the surgeon’s view of, for example, a patient’s troubled artery can be enhanced and the ability to work remotely also increases the surgeon’s dexterity.

As Professor James Friend, leader of the research team at Monash University, explained, motors have lagged behind in the age of technological miniaturisation and provide the key to making robots small enough for injection into the bloodstream. “If you pick up an electronics catalogue, you’ll find all sorts of sensors, LEDs, memory chips, etc that represent the latest in technology and miniaturisation. Take a look however at the motors and there are few changes from the motors available in the 1950s.”

Professor Friend and his team began their research over two years ago in the belief that piezoelectricity was the most suitable energy force for micro-motors because the engines can be scaled down while remaining forceful enough, even at the sizes necessary to enter the bloodstream, for motors to swim against the blood’s current and reach spots difficult to operate upon.

Piezoelectricity is most commonly found in quartz watches and gas stoves. It is based on the ability of some materials to generate electric potential in response to mechanical stress. In the case of a gas stove, the ignition switch on a stove triggers a spring to release a ball that smashes against a piece of piezoelectric material, often kinds of crystal, which translates the force of the ball into more than 10,000 volts of electricity which then travels down wires, reaches the gas, and starts the stove fire.

As Professor Friend explains, “Opportunities for micro-motors abound in fields as diverse as biomedicine, electronics, aeronautics and the automotive industry. Responses to this need have been just as diverse, with designs developed using electromagnetic, electrostatic, thermal and osmotic driving forces. Piezoelectric designs however have favourable scaling characteristics and, in general, are simple designs, which have provided an excellent platform for the development of micro-motors.”

The team has produced prototypes of the motors and is now working on ways to improve the assembly method and the mechanical device which moves and controls the micro-motors.


Story Source:

The above story is based on materials provided by Institute of Physics. Note: Materials may be edited for content and length.


Journal Reference:

  1. B Watson et al. Piezoelectric ultrasonic resonant motor with stator diameter less than 250 m: the Proteus motor. Journal of Micromechanics and Microengineering, 20 January, 2009

Cite This Page:

Institute of Physics. "Microbot Motors Fit To Swim Human Arteries." ScienceDaily. ScienceDaily, 23 January 2009. <www.sciencedaily.com/releases/2009/01/090119210620.htm>.
Institute of Physics. (2009, January 23). Microbot Motors Fit To Swim Human Arteries. ScienceDaily. Retrieved October 22, 2014 from www.sciencedaily.com/releases/2009/01/090119210620.htm
Institute of Physics. "Microbot Motors Fit To Swim Human Arteries." ScienceDaily. www.sciencedaily.com/releases/2009/01/090119210620.htm (accessed October 22, 2014).

Share This



More Health & Medicine News

Wednesday, October 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Orthodontist Mom Jennifer Salzer on the Best Time for Braces

Orthodontist Mom Jennifer Salzer on the Best Time for Braces

Working Mother (Oct. 22, 2014) Is your child ready? Video provided by Working Mother
Powered by NewsLook.com
U.S. Issues Ebola Travel Restrictions, Are Visa Bans Next?

U.S. Issues Ebola Travel Restrictions, Are Visa Bans Next?

Newsy (Oct. 22, 2014) Now that the U.S. is restricting travel from West Africa, some are dropping questions about a travel ban and instead asking about visa bans. Video provided by Newsy
Powered by NewsLook.com
US to Track Everyone Coming from Ebola Nations

US to Track Everyone Coming from Ebola Nations

AP (Oct. 22, 2014) Stepping up their vigilance against Ebola, federal authorities said Wednesday that everyone traveling into the US from Ebola-stricken nations will be monitored for symptoms for 21 days. (Oct. 22) Video provided by AP
Powered by NewsLook.com
Doctors Help Paralysed Man Walk Again, Patient in Disbelief

Doctors Help Paralysed Man Walk Again, Patient in Disbelief

AFP (Oct. 22, 2014) Polish doctors describe how they helped a paralysed man walk again, with the patient in disbelief at the return of sensation to his legs. Duration: 1:04 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins