Featured Research

from universities, journals, and other organizations

Slices Of Living Brain Tissue Are Helping Scientists Identify New Stroke Therapies

Date:
January 25, 2009
Source:
Medical College of Georgia
Summary:
Slices of living human brain tissue are helping scientists learn which drugs can block the waves of death that engulf and engorge brain cells following a stroke.

Slices of living human brain tissue are helping scientists learn which drugs can block the waves of death that engulf and engorge brain cells following a stroke. It's called anoxic depolarization and it primarily results from the brain getting insufficient blood and oxygen after a stroke, says Dr. Sergei Kirov, neuroscientist in the Medical College of Georgia Schools of Medicine and Graduate Studies.
Credit: Image courtesy of Medical College of Georgia

Slices of living human brain tissue are helping scientists learn which drugs can block the waves of death that engulf and engorge brain cells following a stroke.

Related Articles


It's called anoxic depolarization and it primarily results from the brain getting insufficient blood and oxygen after a stroke, says Dr. Sergei Kirov, neuroscientist in the Medical College of Georgia Schools of Medicine and Graduate Studies.

The brain uses about 20 percent of the body's total energy and about half of that is needed to run the pump that maintains healthy levels of sodium and potassium in and around brain cells. A stroke takes away the pump's fuel, called ATP, so neurons and supportive astroglial cells quickly become bloated and dysfunctional. Cells die if the pumps don't start working soon, Dr. Kirov says.

Resulting waves are responsible for much of the immediate brain cell death in the core of a stroke. Milder waves may continue to pound contiguous areas for hours or days, potentially increasing stroke size and damage. In this area called the penumbra, cells get a little more oxygen so there is the potential for recovery if the waves can be silenced, he says.

Dr. Kirov has been examining whether several drugs can stop the pounding of the penumbra in an animal model and has completed a small pilot study in human tissue. The scientist, who directs MCG's Human Brain Laboratory, recently received a second grant from the National Institute of Neurological Disorders and Stroke to focus on the drugs' potential in human tissue. "We only have one approved drug therapy for stroke and new approaches are needed to improve treatment for the third leading cause of death in western countries," he says. He and others believe a focus on human tissue will better identify therapies that have real clinical merit.

A special report in the Nov. 29, 2007 issue of Stroke noted the failure in humans of numerous stroke therapies that looked promising in animal studies and outlined a new road map that includes better proof of efficacy in animal models as well as studies in human brain tissue focusing on the penumbra.

Dr. Kirov agrees. "Human brain slices as a model system can provide a missing link between animal models and patients and offer a unique chance to identify and study potentially useful therapeutics."

He is getting live images of glowing human neurons or astroglial cells to look first at the simulated stroke and then at what protection different drugs provide. The tissue is removed primarily during epilepsy surgery at MCGHealth Medical Center and Children's Medical Center. He replicates a stroke in the tissue by withholding oxygen and glucose then measures whether drugs can block anoxic depolarization.

There is plenty of living proof that cells can recover if the waves are short term: that's essentially what happens in migraines. "Some people describe these moving through their visual field: a wave silencing, but not killing, the neurons," Dr. Kirov says. Precisely what starts the wave remains an unanswered question. But he thinks he may be able to help delay or prevent the destructive electrical activity they bring without depressing usual central nervous system action.

He's testing dibucaine, a local anesthetic known to impact ion channels, which regulate the flow of negatively and positively charged molecules in and out of cells. Positively charged potassium, for example, normally leaks out through ion channels. With anoxic depolarization, there's too much sodium and too little potassium inside cells. He's also studying two sigma receptor ligands, dextromethorphan and carbetapentane. Sigma receptors are ubiquitous in the body, but little is known about their role and what naturally activates them. Recent research suggests sigma receptors help protect cells from stress by ensuring an adequate level of the properly folded proteins they need for normal function. MCG Retinal Biologist Sylvia Smith and others have shown that sigma receptors are located within the endoplasmic reticulum of cells, which controls protein synthesis and regulates calcium levels. When needed, the receptors appear to chaperone these proteins to the cell powerhouse, or mitochondria. In his studies, Dr. Kirov is testing to see whether these sigma receptor ligands inhibit anoxic depolarization in humans to forecast translational success.


Story Source:

The above story is based on materials provided by Medical College of Georgia. Note: Materials may be edited for content and length.


Cite This Page:

Medical College of Georgia. "Slices Of Living Brain Tissue Are Helping Scientists Identify New Stroke Therapies." ScienceDaily. ScienceDaily, 25 January 2009. <www.sciencedaily.com/releases/2009/01/090121122838.htm>.
Medical College of Georgia. (2009, January 25). Slices Of Living Brain Tissue Are Helping Scientists Identify New Stroke Therapies. ScienceDaily. Retrieved December 17, 2014 from www.sciencedaily.com/releases/2009/01/090121122838.htm
Medical College of Georgia. "Slices Of Living Brain Tissue Are Helping Scientists Identify New Stroke Therapies." ScienceDaily. www.sciencedaily.com/releases/2009/01/090121122838.htm (accessed December 17, 2014).

Share This


More From ScienceDaily



More Mind & Brain News

Wednesday, December 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Yoga Could Be As Beneficial For The Heart As Walking, Biking

Yoga Could Be As Beneficial For The Heart As Walking, Biking

Newsy (Dec. 17, 2014) Yoga can help your weight, blood pressure, cholesterol and heart just as much as biking and walking does, a new study suggests. Video provided by Newsy
Powered by NewsLook.com
1st Responders Trained for Autism Sensitivity

1st Responders Trained for Autism Sensitivity

AP (Dec. 16, 2014) More departments are ordering their first responders to sit in on training sessions that focus on how to more effectively interact with those with autism spectrum disorder (Dec. 16) Video provided by AP
Powered by NewsLook.com
Guys Are Idiots, According To Sarcastic Study

Guys Are Idiots, According To Sarcastic Study

Newsy (Dec. 12, 2014) A study out of Britain suggest men are more idiotic than women based on the rate of accidental deaths and other factors. Video provided by Newsy
Powered by NewsLook.com
Believing in Father Christmas Good for Children's Imaginations

Believing in Father Christmas Good for Children's Imaginations

AFP (Dec. 12, 2014) As the countdown to Christmas gets underway, so too does the Father Christmas conspiracy. But psychologists say that telling our children about Santa, flying reindeer and elves is good for their imaginations. Duration: 01:57 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins