Featured Research

from universities, journals, and other organizations

Gold-palladium Nanoparticles Achieve Greener, Smarter Production Of Hydrogen Peroxide

Date:
March 3, 2009
Source:
Lehigh University
Summary:
Chemists and engineers writing in the journal Science reports a breakthrough in the decades-long effort to produce H2O2 directly from oxygen and hydrogen and to limit its decomposition after production. A gold-palladium catalyst, placed on a carbon support pretreated with nitric acid, will make it possible to produce H2O2 on-site, eliminating the need for storage and transport, which can be hazardous.

Hydrogen peroxide is one of the world's most versatile and widely used chemicals. A powerful oxidizing agent, H2O2 is commonly used as a bleach, an antiseptic and a disinfectant.

Despite its importance, however, says Christopher J. Kiely, hydrogen peroxide has eluded the best efforts of the chemists seeking a more direct, efficient and environmentally friendly means of producing it.

"Hydrogen peroxide has for decades been made by an indirect energy-intensive process," says Kiely, a professor of materials science and engineering at Lehigh University.

There are other disadvantages, Kiely adds. The economics of the current production method requires H2O2 to be produced in large quantities and in solutions with concentrations much higher, and less stable, than those used in most practical applications. This necessitates storage and transporting, which can be hazardous.

Chemists have searched nearly a century for a catalyst that can directly combine hydrogen and oxygen to produce H2O2. They have had some luck with palladium, says Kiely, but their efforts have been foiled by a second problem – as fast as H2O2 is produced, it can decompose to water in the presence of the catalyst.

Now, a group of chemists and materials scientists from the UK and the U.S. is reporting in the journal Science that a carefully tailored alloy of palladium and gold nanoparticles catalyzes the direct production of H2O2 while "switching off" the decomposition of the compound. The breakthrough, which culminates more than five years of research on the topic, promises to enable the on-site production of H2O2 in smaller quantities and more desirable concentrations.

The group says the decomposition of H2O2 can be greatly reduced by depositing gold-palladium nanoparticles on a high-surface-area carbon support that has first been washed with nitric acid. The pretreatment decreases the average size of the particles from a range of 2 to 70 nanometers (1 nm equals one-billionth of a meter) to a range of 2 to 25 nm. The washing also results in a more effective spatial distribution of the nanoparticles, enabling them to block the active sites on the carbon support that are responsible for the decomposition of H2O2.

"We learned that neither the concentration of the nitric acid nor the length of time of the washing was important," says Kiely. "What was important was to wash the support in nitric acid before putting the gold-palladium nanoparticles on it. The resulting change in particle size and distribution enables us to retain a lot more of the hydrogen peroxide and to make the direct process more economically viable."

The Science article was coauthored by Kiely, Graham J. Hutchings, Jennifer K. Edwards, Benjamin Solsona, Edwin Ntainjua N, Albert F. Carley and Andrew A. Herzing.

Hutchings, the lead author, is the director of the Cardiff Catalysis Institute (CCI) in the UK. Edwards, Solsona, Ntainjua N and Carley are members of the CCI. Herzing, who earned a Ph.D. from Lehigh in 2006, operates the aberration-corrected electron microscopy facilities in the Surface and Microanalysis Science Division of the U.S. National Institute of Standards and Technology (NIST). Kiely directs the Nanocharacterization Laboratory in Lehigh's Center for Advanced Materials and Nanotechnology.

The group owes its current success to Hutchings' expertise in catalysis and to his longstanding collaboration with Kiely, who has the ability to obtain data using electron microscopes with unmatched imaging and chemical analysis capabilities.

Hutchings and Kiely have been studying the catalytic potential of gold nanoparticles for 15 years, coauthoring four papers in the past four years on the topic for Science and Nature. In 2006, they reported the potential of gold-palladium nanoparticles to oxidize primary alcohols to aldehydes in a more environmentally friendly manner. That reaction is important to the production of spices and perfumes. In 2008, they reported that bilayer clusters of gold nanoparticles measuring about 0.5 nm in diameter were responsible for enabling the oxidation of CO to CO2.

Their research has benefited from the aberration-corrected scanning transmission electron microscopes (STEMs) at Lehigh as well as NIST. Lehigh was the first university in the world to acquire two of the instruments, whose aberration correctors greatly improve imaging resolution and chemical analysis capability by overcoming distortions in the lenses that tend to blur the electron beam.

In the current project, aberration-corrected STEMs at Lehigh and NIST were used to measure the composition and particle size distribution of the gold-palladium alloy, and to understand how they change with various acid-washing pretreatments.

The researchers employed several characterization techniques, including High-Angle Annular Dark Field (HAADF) imaging to measure the change in nanoparticle size and energy-dispersive x-ray (XEDS) analysis to determine the composition of individual alloy particles.

"Without the aberration-corrected STEMs, we would not have been able to unravel what was going on in this instance," says Kiely.

In addition to performing experiments on the gold-palladium catalyst, the researchers ran parallel control experiments on pure gold and pure palladium separately.

"We found it was important for the palladium to incorporate just a small amount of gold," says Kiely. "The gold appears to modify the electronic structure and thus the catalytic activity of the palladium."


Story Source:

The above story is based on materials provided by Lehigh University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Kiely, Graham J. Hutchings, Jennifer K. Edwards, Benjamin Solsona, Edwin Ntainjua N, Albert F. Carley and Andrew A. Herzing. Switching Off Hydrogen Peroxide Hydrogenation in the Direct Synthesis Process. Science, (in press)

Cite This Page:

Lehigh University. "Gold-palladium Nanoparticles Achieve Greener, Smarter Production Of Hydrogen Peroxide." ScienceDaily. ScienceDaily, 3 March 2009. <www.sciencedaily.com/releases/2009/02/090219141507.htm>.
Lehigh University. (2009, March 3). Gold-palladium Nanoparticles Achieve Greener, Smarter Production Of Hydrogen Peroxide. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/2009/02/090219141507.htm
Lehigh University. "Gold-palladium Nanoparticles Achieve Greener, Smarter Production Of Hydrogen Peroxide." ScienceDaily. www.sciencedaily.com/releases/2009/02/090219141507.htm (accessed July 25, 2014).

Share This




More Matter & Energy News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

TSA Administrator on Politics and Flight Bans

TSA Administrator on Politics and Flight Bans

AP (July 24, 2014) TSA administrator, John Pistole's took part in the Aspen Security Forum 2014, where he answered questions on lifting of the ban on flights into Israel's Tel Aviv airport and whether politics played a role in lifting the ban. (July 24) Video provided by AP
Powered by NewsLook.com
Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Algonquin Power Goes Activist on Its Target Gas Natural

Algonquin Power Goes Activist on Its Target Gas Natural

TheStreet (July 23, 2014) When The Deal's Amanda Levin exclusively reported that Gas Natural had been talking to potential suitors, the Ohio company responded with a flat denial, claiming its board had not talked to anyone about a possible sale. Lo and behold, Canadian utility Algonquin Power and Utilities not only had approached the company, but it did it three times. Its last offer was for $13 per share as Gas Natural's was trading at a 60-day moving average of about $12.50 per share. Now Algonquin, which has a 4.9% stake in Gas Natural, has taken its case to shareholders, calling on them to back its proposals or, possibly, a change in the target's board. Video provided by TheStreet
Powered by NewsLook.com
Robot Parking Valet Creates Stress-Free Travel

Robot Parking Valet Creates Stress-Free Travel

AP (July 23, 2014) 'Ray' the robotic parking valet at Dusseldorf Airport in Germany lets travelers to avoid the hassle of finding a parking spot before heading to the check-in desk. (July 23) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile: iPhone Android Web
          Follow: Facebook Twitter Google+
          Subscribe: RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins