Featured Research

from universities, journals, and other organizations

Future Helicopters Get SMART

Date:
March 4, 2009
Source:
NASA
Summary:
Helicopters today are considered a loud, bumpy and inefficient mode for day-to-day domestic travel--best reserved for medical emergencies, traffic reporting and hovering over celebrity weddings. But NASA research into rotor blades made with shape-changing materials could change that view. Twenty years from now, large rotorcraft could be making short hops between cities such as New York and Washington, carrying as many as 100 passengers at a time in comfort and safety.

Tests in a NASA wind tunnel of this SMART rotor hub confirm the ability of advanced helicopter-blade active control strategies to reduce vibrations and noise.
Credit: NASA

Helicopters today are considered a loud, bumpy and inefficient mode for day-to-day domestic travel—best reserved for medical emergencies, traffic reporting and hovering over celebrity weddings.

But NASA research into rotor blades made with shape-changing materials could change that view.

Twenty years from now, large rotorcraft could be making short hops between cities such as New York and Washington, carrying as many as 100 passengers at a time in comfort and safety.

Routine transportation by rotorcraft could help ease air traffic congestion around the nation's airports. But noise and vibration must be reduced significantly before the public can embrace the idea.

"Today's limitations preclude us from having such an airplane," said William Warmbrodt, chief of the Aeromechanics Branch at NASA's Ames Research Center in California, "so NASA is reaching beyond today's technology for the future."

The solution could lie in rotor blades made with piezoelectric materials that flex when subjected to electrical fields, not unlike the way human muscles work when stimulated by a current of electricity sent from the brain.

Helicopter rotors rely on passive designs, such as the blade shape, to optimize the efficiency of the system. In contrast, an airplane's wing has evolved to include flaps, slats and even the ability to change its shape in flight.

NASA researchers and others are attempting to incorporate the same characteristics and capabilities in a helicopter blade.

NASA and the Defense Advanced Research Projects Agency, also known as DARPA, the U.S. Army, and The Boeing Company have spent the past decade experimenting with smart material actuated rotor, or SMART, technology, which includes the piezoelectric materials.

"SMART rotor technology holds the promise of substantially improving the performance of the rotor and allowing it to fly much farther using the same amount of fuel, while also enabling much quieter operations," Warmbrodt said.

There is more than just promise that SMART Rotor technology can reduce noise significantly. There's proof.

The only full-scale SMART Rotor ever constructed in the United States was run through a series of wind tunnel tests between February and April 2008 in the National Full-Scale Aerodynamics Complex at Ames. The SMART Rotor partners joined with the U.S. Air Force, which operates the tunnel, to complete the demonstration.

A SMART Rotor using piezoelectric actuators to drive the trailing edge flaps was tested in the 40- by 80-foot tunnel in 155-knot wind to simulate conditions the rotor design would experience in high-speed forward flight. The rotor also was tested at cruise speed conditions of 124 knots to determine which of three trailing edge flap patterns produced the least vibration and noise. One descent condition also was tested.

Results showed that the SMART Rotor can reduce by half the amount of noise it puts out within the controlled environment of the wind tunnel. The ultimate test of SMART rotor noise reduction capability would come from flight tests on a real helicopter, where the effects of noise that reproduces through the atmosphere and around terrain could be evaluated as well.

The test data also will help future researchers use computers to simulate how differently-shaped SMART Rotors would behave in flight under various conditions of altitude and speed.

For now that remains tough to do.

"Today's supercomputers are unable to accurately model the unsteady physics of helicopter rotors and their interaction with the air," Warmbrodt said. "But we're working on it."


Story Source:

The above story is based on materials provided by NASA. Note: Materials may be edited for content and length.


Cite This Page:

NASA. "Future Helicopters Get SMART." ScienceDaily. ScienceDaily, 4 March 2009. <www.sciencedaily.com/releases/2009/03/090302112227.htm>.
NASA. (2009, March 4). Future Helicopters Get SMART. ScienceDaily. Retrieved October 23, 2014 from www.sciencedaily.com/releases/2009/03/090302112227.htm
NASA. "Future Helicopters Get SMART." ScienceDaily. www.sciencedaily.com/releases/2009/03/090302112227.htm (accessed October 23, 2014).

Share This



More Matter & Energy News

Thursday, October 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Reuters - Innovations Video Online (Oct. 22, 2014) — Inspired by the way a chameleon changes its colour to disguise itself; scientists in Poland want to replace traditional camouflage paint with thousands of electrochromic plates that will continuously change colour to blend with its surroundings. The first PL-01 concept tank prototype will be tested within a few years, with scientists predicting that a similar technology could even be woven into the fabric of a soldiers' clothing making them virtually invisible to the naked eye. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Jet Sales Lift Boeing Profit 18 Pct.

Jet Sales Lift Boeing Profit 18 Pct.

Reuters - Business Video Online (Oct. 22, 2014) — Strong jet demand has pushed Boeing to raise its profit forecast for the third time, but analysts were disappointed by its small cash flow. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Internet of Things Aims to Smarten Your Life

Internet of Things Aims to Smarten Your Life

AP (Oct. 22, 2014) — As more and more Bluetooth-enabled devices are reaching consumers, developers are busy connecting them together as part of the Internet of Things. (Oct. 22) Video provided by AP
Powered by NewsLook.com
What Is Magic Leap, And Why Is It Worth $500M?

What Is Magic Leap, And Why Is It Worth $500M?

Newsy (Oct. 22, 2014) — Magic Leap isn't publicizing much more than a description of its product, but it’s been enough for Google and others to invest more than $500M. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins