Featured Research

from universities, journals, and other organizations

Nanocups Brim With Potential

Date:
March 19, 2009
Source:
Rice University
Summary:
Researchers have created a metamaterial that could light the way toward high-powered optics, ultra-efficient solar cells and even cloaking devices.

Individual nanocup plasmon resonances, magnetic field enhancement and far field-angular scattering (red) for different nanocup orientations relative to the incident light. (A) High-energy axial electroinductive resonance with no incident light redirection. (B) Low-energy transverse magnetoinductive resonance with directional scattering and intensity dependent upon angle of incidence for the case of p-polarization.
Credit: Image courtesy of Rice University

Researchers at Rice University have created a metamaterial that could light the way toward high-powered optics, ultra-efficient solar cells and even cloaking devices.

Naomi Halas, an award-winning pioneer in nanophotonics, and graduate student Nikolay Mirin created a material that collects light from any direction and emits it in a single direction. The material uses very tiny, cup-shaped particles called nanocups.

In a paper in the February issue of the journal Nano Letters, co-authors Halas and Mirin explain how they isolated nanocups to create light-bending nanoparticles.

In earlier research, Mirin had been trying to make a thin gold film with nano-sized holes when it occurred to him the knocked-out bits were worth investigating. Previous work on gold nanocups gave researchers a sense of their properties, but until Mirin's revelation, nobody had found a way to lock ensembles of isolated nanocups to preserve their matching orientation.

"The truth is a lot of exciting science actually does fall in your lap by accident," said Halas, Rice's Stanley C. Moore Professor in Electrical and Computer Engineering and professor of chemistry and biomedical engineering. "The big breakthrough here was being able to lift the nanocups off of a structure and preserve their orientation. Then we could look specifically at the properties of these oriented nanostructures."

Mirin's solution involved thin layers of gold deposited from various angles onto polystyrene or latex nanoparticles that had been distributed randomly on a glass substrate. The cups that formed around the particles – and the dielectric particles themselves – were locked into an elastomer and lifted off of the substrate. "You end up with this transparent thing with structures all oriented the same way," he said.

In other words, he had a metamaterial, a substance that gets its properties from its structure and not its composition. Halas and Mirin found their new material particularly adept at capturing light from any direction and focusing it in a single direction.

Redirecting scattered light means none of it bounces off the metamaterial back into the eye of an observer. That essentially makes the material invisible. "Ideally, one should see exactly what is behind an object," said Mirin.

"The material should not only retransmit the color and brightness of what is behind, like squid or chameleons do, but also bend the light around, preserving the original phase information of the signal."

Halas said the embedded nanocups are the first true three-dimensional nanoantennas, and their light-bending properties are made possible by plasmons. Electrons inside plasmonic nanoparticles resonate with input from an outside electromagnetic source in the same way a drop of water will make ripples in a pool. The particles act the same way radio antennas do, with the ability to absorb and emit electromagnetic waves that, in this case, includes visible wavelengths.

Because nanocup ensembles can focus light in a specific direction no matter where the incident light is coming, they make pretty good candidates for, say, thermal solar power. A solar panel that doesn't have to track the sun yet focuses light into a beam that's always on target would save a lot of money on machinery.

Solar-generated power of all kinds would benefit, said Halas. "In solar cells, about 80 percent of the light passes right through the device. And there's a huge amount of interest in making cells as thin as possible for many reasons."

Halas said the thinner a cell gets, the more transparent it becomes. "So ways in which you can divert light into the active region of the device can be very useful. That's a direction that needs to be pursued," she said.

Using nanocup metamaterial to transmit optical signals between computer chips has potential, she said, and enhanced spectroscopy and superlenses are also viable possibilities.

"We'd like to implement these into some sort of useful device," said Halas of her team's next steps. "We would also like to make several variations. We're looking at the fundamental aspects of the geometry, how we can manipulate it, and how we can control it better.

"Probably the most interesting application is something we not only haven't thought of yet, but might not be able to conceive for quite some time."


Story Source:

The above story is based on materials provided by Rice University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Nikolay A. Mirin and Naomi J. Halas. Light-Bending Nanoparticles. Nano Letters, 2009, 9 (3), pp 1255%u20131259; February 19, 2009 DOI: 10.1021/nl900208z

Cite This Page:

Rice University. "Nanocups Brim With Potential." ScienceDaily. ScienceDaily, 19 March 2009. <www.sciencedaily.com/releases/2009/03/090313171318.htm>.
Rice University. (2009, March 19). Nanocups Brim With Potential. ScienceDaily. Retrieved April 17, 2014 from www.sciencedaily.com/releases/2009/03/090313171318.htm
Rice University. "Nanocups Brim With Potential." ScienceDaily. www.sciencedaily.com/releases/2009/03/090313171318.htm (accessed April 17, 2014).

Share This



More Matter & Energy News

Thursday, April 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

German Researchers Crack Samsung's Fingerprint Scanner

German Researchers Crack Samsung's Fingerprint Scanner

Newsy (Apr. 16, 2014) German researchers have used a fake fingerprint made from glue to bypass the fingerprint security system on Samsung's new Galaxy S5 smartphone. Video provided by Newsy
Powered by NewsLook.com
Porsche CEO Says Supercar Is Not Dead: Cue the Spyder 918

Porsche CEO Says Supercar Is Not Dead: Cue the Spyder 918

TheStreet (Apr. 16, 2014) The Porsche Spyder 918 proves that, in an automotive world obsessed with fuel efficiency, the supercar is not dead. Porsche North America CEO Detlev von Platen attributes the brand's consistent sales growth -- 21% in 2013 -- with an investment in new technology and expanded performance dynamics. The hybrid Spyder 918 has 887 horsepower and 944 lb-ft of torque, but it can run 18 miles on just an electric charge. The $845,000 vehicle is not a consumer-targeted vehicle but a brand statement. Video provided by TheStreet
Powered by NewsLook.com
Industry's Optimism Shines At New York Auto Show

Industry's Optimism Shines At New York Auto Show

Newsy (Apr. 16, 2014) After seeing auto sales grow last month, there's plenty for the industry to celebrate as it rolls out its newest designs. Video provided by Newsy
Powered by NewsLook.com
Ford Mustang Fetes Its 50th Atop Empire State Building

Ford Mustang Fetes Its 50th Atop Empire State Building

AFP (Apr. 16, 2014) Ford celebrated the 50th birthday of its beloved Mustang by displaying a new model of the convertible on top of the Empire State Building in New York. Duration: 00:28 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins