Featured Research

from universities, journals, and other organizations

Human Adult Testes Cells Can Become Embryonic-like

Date:
March 24, 2009
Source:
Georgetown University Medical Center
Summary:
Using what they say is a relatively simple method, scientists have extracted stem/progenitor cells from testes and have converted them back into pluripotent embryonic-like stem cells. Researchers say that the nave cells are now potentially capable of morphing into any cell type that a body needs, from brain neurons to pancreatic tissue.

Using what they say is a relatively simple method, scientists at Georgetown University Medical Center have extracted stem/progenitor cells from adult testes and have converted them back into pluripotent embryonic-like stem cells. Researchers say that the nave cells are now potentially capable of morphing into any cell type that a body needs, from brain neurons to pancreatic tissue.

And because they produced these stem cells without the use of additional genes, the technology should be safe for human use, the researchers say in a paper published online in the journal Stem Cells and Development.

“Given these advances, and with further validation, it is possible that in the not–too-distant-future, men could be cured of disease with a biopsy of their own testes,” says the study’s senior investigator, Martin Dym, PhD, a professor in the Department of Biochemistry and Molecular & Cellular Biology.

The Georgetown researchers are among the first scientists to show that human testes stem cells can become embryonic-like stem cells, and they have done this work using testis tissue from organ donors, which they say has provided enough valuable tissue to allow them to make their discoveries. While they have published their preliminary results before, they are now disclosing a new and simpler method to isolate the testes stem/progenitor cells than has not been seen in other published procedures in humans and rodents.

Being able to use adult stem cells for this type of cell-based therapy offers a number of advantages over other strategies currently being explored, says Dym. The use of embryonic stem cells is controversial because it necessitates destruction of an embryo, and pushing fully mature cells, such as skin cells, back into a stem-like state requires use of cancer genes, and has therefore been viewed as potentially risky for human treatment, he says.

The idea with this approach is that men with an incurable disorder or disease could have a biopsy of their testes, which Dym says is a common procedure in patients suspected of having testicular cancer. Testes stem/progenitor cells – those cells that can go on to produce sperm – would be removed from the biopsy tissue, and grown in the laboratory with the addition of certain chemicals and growth factors. This causes the cells to revert back into a pluripotent state, which could then be driven into chosen cell types.

“We are taking adult spermatogonial stem/progenitor cells, which in the body are unipotent, capable of only making sperm, and coaxing them back to embryonic stem-like cells, which are pluripotent,” Dym says.

Once these new cell types are produced – several weeks after initial collection – they can be frozen and used at any point in the future, the researchers say. He and the research team conducted the study using testes donated to GUMC from four organ donors, aged 16-52 years old.

“This is novel data which strengthens the argument for carrying out further research on pluripotent cells derived from human testes,” Dym says.

The next step, he says, is to get differentiated cells to cure disease in animal models and the researchers are now working on a project that uses testes spermatogonial stem/progenitor cells that morphed into pancreatic cells to treat diabetes in mouse models of human diabetes.

The study was funded by a grant from the National Institutes of Health. The authors report no potential financial conflicts.

Co-authors include first author Nady Golestaneh, PhD, Ian Gallicano, PhD, and other Georgetown University Medical Center investigators in the Departments of Oncology and Obstetrics and Gynecology, the Lombardi Comprehensive Cancer Center, and in the Department of Biochemistry and Molecular & Cellular Biology. Colleagues from the Washington Regional Transplant Community also participated in the study.


Story Source:

The above story is based on materials provided by Georgetown University Medical Center. Note: Materials may be edited for content and length.


Cite This Page:

Georgetown University Medical Center. "Human Adult Testes Cells Can Become Embryonic-like." ScienceDaily. ScienceDaily, 24 March 2009. <www.sciencedaily.com/releases/2009/03/090323134307.htm>.
Georgetown University Medical Center. (2009, March 24). Human Adult Testes Cells Can Become Embryonic-like. ScienceDaily. Retrieved July 22, 2014 from www.sciencedaily.com/releases/2009/03/090323134307.htm
Georgetown University Medical Center. "Human Adult Testes Cells Can Become Embryonic-like." ScienceDaily. www.sciencedaily.com/releases/2009/03/090323134307.htm (accessed July 22, 2014).

Share This




More Health & Medicine News

Tuesday, July 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Courts Conflicted Over Healthcare Law

Courts Conflicted Over Healthcare Law

AP (July 22, 2014) Two federal appeals courts issued conflicting rulings Tuesday on the legality of the federally-run healthcare exchange that operates in 36 states. (July 22) Video provided by AP
Powered by NewsLook.com
Why Do People Believe We Only Use 10 Percent Of Our Brains?

Why Do People Believe We Only Use 10 Percent Of Our Brains?

Newsy (July 22, 2014) The new sci-fi thriller "Lucy" is making people question whether we really use all our brainpower. But, as scientists have insisted for years, we do. Video provided by Newsy
Powered by NewsLook.com
Scientists Find New Way To Make Human Platelets

Scientists Find New Way To Make Human Platelets

Newsy (July 22, 2014) Boston scientists have discovered a new way to create fully functioning human platelets using a bioreactor and human stem cells. Video provided by Newsy
Powered by NewsLook.com
Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins