Featured Research

from universities, journals, and other organizations

Scientists Discover And Manipulate Molecular Interplay That Moves Cancer Cells

Date:
April 2, 2009
Source:
Mayo Clinic
Summary:
Based on research that reveals new insight into mechanisms that allow invasive tumor cells to move, researchers have a new understanding about how to stop cancer from spreading. A cancer that spreads elsewhere in the body, known as metastasis, is the process that most often leads to death from the disease.

Based on research that reveals new insight into mechanisms that allow invasive tumor cells to move, researchers at the Mayo Clinic campus in Florida have a new understanding about how to stop cancer from spreading. A cancer that spreads elsewhere in the body, known as metastasis, is the process that most often leads to death from the disease.

In the March 29 online issue of Nature Cell Biology, researchers say that a molecule known as protein kinase D1 (PKD1) is key to the ability of a tumor cell to "remodel" its structure, enabling it to migrate and invade. The researchers found that if PKD1 is active, tumor cells cannot move, a finding they say explains why PKD1 is silenced in some invasive cancers.

During metastasis, invasive cancer cells respond to biological signals to move away from a primary tumor. Multiple research groups at Mayo Clinic in Florida are especially interested in this process. One team, led by cancer biologist Peter Storz, Ph.D., has been investigating a process known as actin remodeling at the leading edge - the most forward point - of these migrating tumor cells.

"The events that reorganize the actin cytoskeleton at the leading edge are complex — a multitude of molecules act in concert," Dr. Storz says. "But it appears that PKD1 must be turned off if cancer cells are to migrate."

Actin filaments help make up the cytoskeleton of cells. For cancer cells to move, the actin-based cell structure has to be continually reorganized, Dr. Storz says, and to do this, new actin filaments need to be generated to shift the cell forward.

Dr. Storz' group discovered that PKD1 was critical to this process. The researchers found that PKD1 inhibits another protein known as slingshot, which regulates the severing of existing actin structures so that new actin filaments can be synthesized, an event that is essential for cell movement.

The researchers used methods to deplete tumor cells of PKD1 and found that their motility increased. They then expressed activated PKD1 in tumor cells and found that movement was blocked. PKD1 is therefore a negative regulator of directed cell migration, and if PKD1 is not expressed in tumor cells, slingshot will become active and will contribute to the reorganization of actin, and a tumor cell will move, according to researchers.

"This makes sense, because other investigators have found that PKD1 is down-regulated, or turned off, in invasive forms of gastric, prostate, and breast cancer," says Dr. Storz.

So far, investigators have identified a number of players along the pathways that regulate cancer cell movement, from the molecule (RhoaA) that activates PKD1, to the well-known protein (cofilin) that disassembles actin filaments and which is regulated by slingshot. When PKD1 is activated, cofilin does not function and so the cell cannot move.

"Now that we have identified PKD1 as key regulator in processes regulating actin-based directed tumor cell movement, we can begin to think about designing treatments to stop invasive cancer cells from metastasizing," says Dr. Storz. "The basic mechanisms we have uncovered are key to developing those strategies."

Co-authors include Tim Eiseler, Ph.D., Heike Dφppler, and Irene Yan from the Mayo Clinic Department of Cancer Biology; and Kanae Kitatani, Ph.D., and Kensaku Mizuno, Ph.D., from the Graduate School of Life Sciences at Tohoku University in Japan.

The study was funded by Mayo Foundation and the Mayo Comprehensive Cancer Center, the National Cancer Institute, a 'Friends for an Earlier Breast Cancer Test' Grant, and by a grant-in-aid for scientific research from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.


Story Source:

The above story is based on materials provided by Mayo Clinic. Note: Materials may be edited for content and length.


Cite This Page:

Mayo Clinic. "Scientists Discover And Manipulate Molecular Interplay That Moves Cancer Cells." ScienceDaily. ScienceDaily, 2 April 2009. <www.sciencedaily.com/releases/2009/03/090329143332.htm>.
Mayo Clinic. (2009, April 2). Scientists Discover And Manipulate Molecular Interplay That Moves Cancer Cells. ScienceDaily. Retrieved July 29, 2014 from www.sciencedaily.com/releases/2009/03/090329143332.htm
Mayo Clinic. "Scientists Discover And Manipulate Molecular Interplay That Moves Cancer Cells." ScienceDaily. www.sciencedaily.com/releases/2009/03/090329143332.htm (accessed July 29, 2014).

Share This




More Health & Medicine News

Tuesday, July 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Deadly Ebola Virus Threatens West Africa

Deadly Ebola Virus Threatens West Africa

AP (July 28, 2014) — West African nations and international health organizations are working to contain the largest Ebola outbreak in history. It's one of the deadliest diseases known to man, but the CDC says it's unlikely to spread in the U.S. (July 28) Video provided by AP
Powered by NewsLook.com
$15B Deal on Vets' Health Care Reached

$15B Deal on Vets' Health Care Reached

AP (July 28, 2014) — A bipartisan deal to improve veterans health care would authorize at least $15 billion in emergency spending to fix a veterans program scandalized by long patient wait times and falsified records. (July 28) Video provided by AP
Powered by NewsLook.com
Two Americans Contract Ebola in Liberia

Two Americans Contract Ebola in Liberia

Reuters - US Online Video (July 28, 2014) — Two American aid workers in Liberia test positive for Ebola while working to combat the deadliest outbreak of the virus ever. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Traditional African Dishes Teach Healthy Eating

Traditional African Dishes Teach Healthy Eating

AP (July 28, 2014) — Classes are being offered nationwide to encourage African Americans to learn about cooking fresh foods based on traditional African cuisine. The program is trying to combat obesity, heart disease and other ailments often linked to diet. (July 28) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins