Featured Research

from universities, journals, and other organizations

Artificial Pump Effectively Backs Up Failing Hearts

Date:
April 4, 2009
Source:
Washington University School of Medicine
Summary:
Patients with severe heart failure can be bridged to eventual transplant by a new, smaller and lighter implantable heart pump, according to a just-completed study of the device.

Patients with severe heart failure can be bridged to eventual transplant by a new, smaller and lighter implantable heart pump, according to a just-completed study of the device. Results of this third-generation heart assist device were reported at the 58th annual meeting of the American College of Cardiology on March 30.

Related Articles


The device, called a left ventricular assist device (LVAD), is the latest generation of heart assist devices. The LVAD was tested at five main sites: Washington University School of Medicine in St. Louis, the University of Minnesota, Mt. Sinai School of Medicine, Inova Fairfax Hospital and the University of Pittsburgh.

"LVADs have allowed us to support patients until they can receive a heart transplant, so they are called a bridge to transplant," says Gregory Ewald, M.D., a Washington University cardiologist at Barnes-Jewish Hospital and medical director of the Heart Failure, Cardiac Transplantation and Total Artificial Heart Program. "For patients whose hearts are failing and are awaiting transplantation, these devices can be lifesavers. Washington University is the only medical center in the region where patients can receive these devices at this time."

In addition to Ewald, associate professor of medicine, lead investigators in the trial included Nader Moazami, M.D., associate professor of surgery and surgical director of the Cardiac Transplantation and Total Artificial Heart Program at Washington University, and Andrew Boyle, M.D., associate professor of medicine at the University of Minnesota and medical director of Heart Failure, Cardiac Transplantation and Mechanical Circulatory Support. Boyle presented the findings at the ACC meeting.

An LVAD is implanted inside the chest cavity near the heart and is connected to the heart's left ventricle (pumping chamber). It assists the patient's weakened or damaged ventricle in pumping blood through the body. By restoring a normal blood flow, the device improves patients' health. Because it is powered by portable battery packs, patients usually go home while they wait for a heart transplant.

The LVAD used in this study, the VentrAssist, is termed a third-generation heart assist device. Measuring 2.5-inches across and weighing 10 ounces, the pump is considered an improvement over earlier devices because its size and light weight make it suitable for small adults and children. In addition, its pumping mechanism has no contacting parts for improved durability.

Patients who received the LVAD in the study were approved and listed for cardiac transplantation. The study considered the device successful if a patient survived until heart transplantation or survived at least 180 days after the device was implanted and remained qualified for heart transplantation. Eighty-five percent of patients met this measure of success.

Out of 98 patients who received the device, 60 were transplanted, 19 continued to be supported with the device and 19 died. The median time on LVAD support was 131 days. Adverse events reported during the trial included stroke and bleeding, and the number and type of adverse events was similar to other LVADs but better than that of first-generation VAD devices.

Answering standardized questionnaires for patients with heart failure, they reported a significantly improved quality of life after receiving the device, indicating that their heart failure was less apt to interfere with everyday activities such as housework, hobbies or sleeping or to affect their mood, ability to concentrate or energy level.

"Before implantation of the device, 80 percent of these patients were rated class four on the New York Heart Association scale — they were short of breath at rest," Ewald says. "But by six months, 84 percent were in class one or two, meaning their heart failure symptoms were minimal or mild. All of them were able to go home with the device, and that allowed them to rehabilitate themselves — their nutrition improved and they were in better shape, making them better candidates for heart transplantation."

The VentrAssist device pumps blood in a continuous flow in contrast to earlier heart assist pumps that pumped blood in pulses. It contains a spinning rotor that is suspended by blood within the pump housing and magnetically rotated. Since the impeller blades don't touch any part of the pump, the chance of damage to blood cells is lessened. With only one moving part, the pump is resistant to wear.

The positive results from this clinical study mean the VentrAssist will be submitted to the U.S. Food and Drug Administration for approval for use as a bridge to heart transplant. In the interim, Washington University School of Medicine will continue to provide the device to patients as part of a clinical trial.

Doctors here are continuing to enroll patients in a trial of the device as a bridge to transplantation, and they are also testing the device as "destination therapy" to see if the device can function as an alternative to heart transplant by permanently assisting failing hearts. For information about enrolling in the trials call 314-454-7687.

Reference: Boyle AJ, Moazami N, John R, Ewald GA, Anyanwu AC, Pinney SP, Desai SS, Burton NA, Teuteberg JJ, Kormos RL, Ascheim DV, Gelijns AC, Parides MK, Joyce LD. The VentrAssist U.S. Pivotal Bridge to Cardiac Transplantation Trial. Presented at 58th annual meeting of the American College of Cardiology, March 30, 2009.

VentrAssist is made by Ventracor. Ewald, Moazami and Boyle report no financial interest in Ventracor.

Funding from Ventracor supported this research.


Story Source:

The above story is based on materials provided by Washington University School of Medicine. Note: Materials may be edited for content and length.


Cite This Page:

Washington University School of Medicine. "Artificial Pump Effectively Backs Up Failing Hearts." ScienceDaily. ScienceDaily, 4 April 2009. <www.sciencedaily.com/releases/2009/04/090402120711.htm>.
Washington University School of Medicine. (2009, April 4). Artificial Pump Effectively Backs Up Failing Hearts. ScienceDaily. Retrieved April 25, 2015 from www.sciencedaily.com/releases/2009/04/090402120711.htm
Washington University School of Medicine. "Artificial Pump Effectively Backs Up Failing Hearts." ScienceDaily. www.sciencedaily.com/releases/2009/04/090402120711.htm (accessed April 25, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Saturday, April 25, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

85 Killed in Niger by Meningitis Since Start of Year

85 Killed in Niger by Meningitis Since Start of Year

AFP (Apr. 24, 2015) A meningitis outbreak in Niger has killed 85 people since the start of the year prompting authorities to close schools in the capital Niamey until Monday. Video provided by AFP
Powered by NewsLook.com
C-Section Births a Trend in Brazil

C-Section Births a Trend in Brazil

AFP (Apr. 24, 2015) More than half of Brazil&apos;s babies are born via cesarean section, as mothers and doctors opt for a faster and less painful experience despite the health risks. Duration: 02:02 Video provided by AFP
Powered by NewsLook.com
Anti-Malaria Jab Hope

Anti-Malaria Jab Hope

Reuters - News Video Online (Apr. 24, 2015) The world&apos;s first anti-malaria vaccine could get the go-ahead for use in Africa from October if approved by international regulators. Paul Chapman reports. Video provided by Reuters
Powered by NewsLook.com
3D Food Printing: The Meal of the Future?

3D Food Printing: The Meal of the Future?

AP (Apr. 23, 2015) Developers of 3D food printing hope the culinary technology will revolutionize the way we cook and eat. (April 23) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins