Featured Research

from universities, journals, and other organizations

How The Brain Processes Important Information

Date:
April 14, 2009
Source:
UT Southwestern Medical Center
Summary:
Researchers have shed light on how the neurotransmitter dopamine helps brain cells process important information.

Researchers at UT Southwestern Medical Center have shed light on how the neurotransmitter dopamine helps brain cells process important information.

Related Articles


Researchers found in a study of mouse cells that this neurotransmitter, one of the molecules used by nerve cells to communicate with one another, causes certain brain cells to become more flexible and changes brain-cell circuitry to process important information differently than mundane information.

"This can help one remember a new, important episode as distinct from any other episode, such as remembering where you parked your car today versus yesterday," said Dr. Robert Greene, professor of psychiatry at UT Southwestern and senior author of the study published in the March 11 issue of the Journal of Neuroscience.

"If we can one day manipulate the way that salient information is processed, we might be able to not only improve learning, but also improve the learning needed to extinguish severe fear responsiveness, such as when a soldier can't forget emotional war memories associated with post-traumatic stress disorder," he said.

Dr. Greene said the research also could have implications for addictions and schizophrenia, because those conditions are associated with alterations in dopamine in the brain.

Researchers have known that dopamine is released in the brain in association with experiencing "important" events and remembering salient acts, such as learning to avoid a hot stove or that a good grade is rewarded. The current research focused on how dopamine operates on the cells associated with this type of memory formation.

Dr. Greene, director of the National Clozapine Coordinating Center at the Dallas Veterans Affairs Medical Center, and his research team isolated slices of the hippocampus region of the animals' brains and then electrically stimulated the cells. To simulate what happens in the brain in response to a memory-worthy event, they then exposed the cells to a selective dopamine-like neurotransmitter agent and repeated the stimulation. By comparing the effects of the stimulation with and without the dopamine agent, they could identify changes in NMDA receptor responses. NMDA receptors are proteins that mediate synaptic plasticity when activated.

"The NMDA responses changed to increase the cells' plasticity, and we think that this facilitates learning and memory," Dr. Greene said.

In addition, the changes in NMDA responses to dopamine agents changed the functional circuitry of the cells. These changes made the cells more responsive to electrical impulses coming from an indirect route through three processing "stations" before they reached the output region of the hippocampus. Without the presence of dopamine, Dr. Greene said, the cells tend to respond instead to impulses traveling by a route that is more direct and requires less processing. Information sent by this direct route may reflect what is already known and is less likely to change the animal's behavior.

"While the current study involved isolated mouse brain tissue containing the memory circuits, the human brain likely works the same way," Dr. Greene said. "You don't want to have interference from yesterday. You need to know where you parked your car today, and dopamine may help to ensure that information from today will be remembered as distinct from yesterday."

The researchers next will study how dopamine modulation affects learning and memory-related behavior and will investigate further exactly how dopamine acts on cells and their circuits.

Other researchers from UT Southwestern involved in the study were lead author Dr. Juan Varela, instructor of psychiatry, and Dr. Leah Leverich, who recently completed her Ph.D. in the neuroscience program. A researcher from the University of Mainz in Germany also participated.

The study was funded by the National Institutes of Health and the U.S. Department of Veterans Affairs.


Story Source:

The above story is based on materials provided by UT Southwestern Medical Center. Note: Materials may be edited for content and length.


Cite This Page:

UT Southwestern Medical Center. "How The Brain Processes Important Information." ScienceDaily. ScienceDaily, 14 April 2009. <www.sciencedaily.com/releases/2009/04/090402143748.htm>.
UT Southwestern Medical Center. (2009, April 14). How The Brain Processes Important Information. ScienceDaily. Retrieved November 23, 2014 from www.sciencedaily.com/releases/2009/04/090402143748.htm
UT Southwestern Medical Center. "How The Brain Processes Important Information." ScienceDaily. www.sciencedaily.com/releases/2009/04/090402143748.htm (accessed November 23, 2014).

Share This


More From ScienceDaily



More Mind & Brain News

Sunday, November 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Could Your Genes Be The Reason You're Single?

Could Your Genes Be The Reason You're Single?

Newsy (Nov. 21, 2014) Researchers in Beijing discovered a gene called 5-HTA1, and carriers are reportedly 20 percent more likely to be single. Video provided by Newsy
Powered by NewsLook.com
Milestone Birthdays Can Bring Existential Crisis, Study Says

Milestone Birthdays Can Bring Existential Crisis, Study Says

Newsy (Nov. 21, 2014) Researchers find that as people approach new decades in their lives they make bigger life decisions. Video provided by Newsy
Powered by NewsLook.com
You Don't Have To Be Alcohol Dependent To Need Treatment

You Don't Have To Be Alcohol Dependent To Need Treatment

Newsy (Nov. 21, 2014) A study by the Centers for Disease Control and Prevention found 9 out of 10 excessive drinkers in the country are not alcohol dependent. Video provided by Newsy
Powered by NewsLook.com
Your Complicated Job Might Keep Your Brain Young

Your Complicated Job Might Keep Your Brain Young

Newsy (Nov. 20, 2014) Researchers at the University of Edinburgh found the more complex your job is, the sharper your cognitive skills will likely be as you age. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins