Featured Research

from universities, journals, and other organizations

Physicists Squeeze Light Out Of Quantum Dots

Date:
April 8, 2009
Source:
McGill University
Summary:
Scientists have successfully amplified light with so-called "colloidal quantum dots," a technology that had been written off by many as a dead-end. The researchers determined that colloidal quantum dots do indeed amplify light as promised.

McGill University researchers have successfully amplified light with so-called "colloidal quantum dots," a technology that had been written off by many as a dead-end.

Related Articles


Over the last 15 years, repeated quantum dot research efforts failed to deliver on expected improvements in amplification, and many researchers started to believe that an unknown but insurmountable law of physics was blocking their path. Essentially, they said, quantum dots would simply never work well for one of their primary applications.

However, after extensive research, Professor Patanjali (Pat) Kambhampati and colleagues at McGill University's Department of Chemistry determined that colloidal quantum dots do indeed amplify light as promised. The earlier disappointments were due to accidental roadblocks, not by any fundamental law of physics, the researchers said. Their results were published in the March 2009 issue of Physical Review Letters.

Colloidal quantum dots can actually be painted directly on to surfaces, and this breakthrough has enormous potential significance for the future of laser technology, and by extension, for telecommunications, next-generation optical computing and an innumerable array of other applications.

Lasers – beams of high-powered coherent light – have applications in dozens of fields, most notably in telecommunications, where they are used to transmit voice and data over fibre-optic cables. Like sound, radio waves or electricity, laser signals gradually lose power over distance and must be passed through an amplifier to maintain signal strength. Until now, the best available amplification technology was the quantum well, a thin sheet made of semi-conductor material which confines electrons to a one-dimensional plane, and consequently amplifies light. Colloidal quantum dots perform a similar function, but in a three-dimensional box-like structure instead of a flat sheet.

"Everyone expected this little box to be significantly better than a thin sheet," Kambhampati said. "You'd require less electrical power, and you wouldn't need to use arrays of expensive cooling racks. The idea was to make the lasing process as cheap as possible. But the expected results were not really there. So people said 'let's forget about the quantum dot' and they tried rods or onion shapes. It became a game of making a whole soup of different shapes and hoping one of them would work.

"In our view," he continued, "no one had figured out how the simple, prototypical quantum dot actually worked. And if you don't know that, how are you going to rationally construct a device out of it?"

In the end, Kambhampati and his colleagues discovered that the major problem lay in the way researchers had been powering their quantum dot amplifiers.

"We discovered that there was nothing fundamentally wrong with the dots. If you weren't careful in your measurements, when powering the quantum dot, you would accidentally create a parasitic effect that would kill the amplification." he said. "Once we understood this, we were able to take a quantum dot that no one believed could amplify anything, and turned it into the most efficient amplifier ever measured, as far as I know."


Story Source:

The above story is based on materials provided by McGill University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Ryan R. Cooney, Samuel L. Sewall, D. M. Sagar, and Patanjali Kambhampati. Gain Control in Semiconductor Quantum Dots via State-Resolved Optical Pumping. Physical Review Letters, 2009; 102 (12): 127404 DOI: 10.1103/PhysRevLett.102.127404

Cite This Page:

McGill University. "Physicists Squeeze Light Out Of Quantum Dots." ScienceDaily. ScienceDaily, 8 April 2009. <www.sciencedaily.com/releases/2009/04/090402171436.htm>.
McGill University. (2009, April 8). Physicists Squeeze Light Out Of Quantum Dots. ScienceDaily. Retrieved November 27, 2014 from www.sciencedaily.com/releases/2009/04/090402171436.htm
McGill University. "Physicists Squeeze Light Out Of Quantum Dots." ScienceDaily. www.sciencedaily.com/releases/2009/04/090402171436.htm (accessed November 27, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Thursday, November 27, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

NASA's First 3-D Printer In Space Creates Its First Object

NASA's First 3-D Printer In Space Creates Its First Object

Newsy (Nov. 26, 2014) The International Space Station is now using a proof-of-concept 3D printer to test additive printing in a weightless, isolated environment. Video provided by Newsy
Powered by NewsLook.com
Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Reuters - Innovations Video Online (Nov. 26, 2014) Innovative recycling project in La Paz separates city waste and converts plastic garbage into school furniture made from 'plastiwood'. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Blu-Ray Discs Getting Second Run As Solar Panels

Blu-Ray Discs Getting Second Run As Solar Panels

Newsy (Nov. 26, 2014) Researchers at Northwestern University are repurposing Blu-ray movies for better solar panel technology thanks to the discs' internal structures. Video provided by Newsy
Powered by NewsLook.com
Today's Prostheses Are More Capable Than Ever

Today's Prostheses Are More Capable Than Ever

Newsy (Nov. 26, 2014) Advances in prosthetics are making replacement body parts stronger and more lifelike than they’ve ever been. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins