Featured Research

from universities, journals, and other organizations

Averting Radio Spectrum Saturation, Opportunistically

Date:
April 13, 2009
Source:
ICT Results
Summary:
Mobile users want better video calls, streaming television and faster downloads, placing more demands on the limited radio spectrum available to operators. Could handsets that intelligently sense their radio environment and opportunistically grab free bandwidth be a solution?

Mobile users want better video calls, streaming television and faster downloads, placing more demands on the limited radio spectrum available to operators. Could handsets that intelligently sense their radio environment and opportunistically grab free bandwidth be a solution?

A team of European researchers believe they could be. Whereas most recent initiatives aimed at making more efficient use of the radio spectrum have looked at spectrum management from the network end, the team behind the ORACLE (Opportunistic Radio Communications in unLicensed Environments) project focused instead on making handsets actively manage how and when they use the network.

ORACLE’s pioneering approach promises to minimise bandwidth saturation in both licensed bands of the radio spectrum, such as that used to carry mobile phone signals, and unlicensed industrial, scientific and medical (ISM) bands – the kind used by WiFi networks and RFID chips.

“With demand booming for new services, both in terms of the number of connections and also quality, we need to find better ways of utilising the radio spectrum available to us… otherwise we will reach a point of saturation,” notes Dominique Noguet, the head of the Digital Architecture Design and Prototyping lab at Minatec CEA-LETI in France and coordinator of the ORACLE project. “We are dealing with a finite resource, but one that can be reused in novel ways,” he adds.

Because it is used for many kinds of communications, from TV broadcasting and mobile phone signals to wireless internet access and military applications – each of which could interfere with the other – the radio spectrum is probably the most tightly regulated natural resource in the world. Mobile operators, who pay billions of euros for licenses, are therefore continually looking for ways to squeeze more out of the limited bandwidth available to them. However, while more efficient network management by operators has gone some way toward addressing the issue, there are limits to the gains in capacity that can be made by following that approach, Noguet says.

“Recent initiatives have focused on operators sharing information about network use with each other so that high traffic on one network can utilise unused bandwidth on another. But I doubt operators will be very willing to share that information as it could help their competitors,” he notes.

Instead, the team behind the ORACLE project have put mobile handsets to the task of finding available bandwidth and using it in the best way possible. In some cases, the approach takes operators and traditional mobile networks (centred on static base stations that relay signals) out of the equation.

The core technology relies on highly sensitive sensors in the handset that monitor radio spectrum usage by other devices and base stations in their immediate vicinity, combined with software that opportunistically decides when and what bandwidth to use when it becomes available. The approach is known as Opportunistic Radio (OR) and it could lead to a dramatic rethink of the way networks are managed, Noguet predicts.

“The techniques go far beyond the capabilities of modern mobile terminals, but they hold the potential to overcome part of the bandwidth problems operators are facing,” he explains.

Unburdening the network with ad hoc communications

The technology could, for example, allow handsets to create ad hoc networks with other mobile devices in their immediate vicinity to share data, reducing the amount of traffic passing through base stations and the wider mobile network.

This was proposed for UMTS-FDD systems in which the uplink band could be used to establish the ad hoc networks. And, in the case of wireless local area networks (WLANs), ORACLE has demonstrated an OR device capable of taking into account both the frequency dimension, by switching channels, and also the time the frequency is available, providing a new approach to getting people connected even when the network is highly congested.

“One of our demonstrators showed how a device could utilise the same channel as another device receiving streaming video by making use of time slots that previously would not have been utilised as efficiently,” Noguet says. “The upshot is that, in congested WiFi networks, such as in a busy hotel, more people would be able to get connected and the speed and stability of their connections would be better.”

Though Noguet stresses that the ORACLE project focused on enabling technology for more efficient spectrum use rather than on the applications that use that spectrum, he says implementing OR techniques should greatly improve quality of service for mobile and WiFi network users. Operators, on the other hand, would benefit from being able to provide more services to more people more efficiently and at lower cost.

However, as with many technologies in the telecommunications field, and despite widespread interest from operators, it may be some time before the system developed in the ORACLE project starts being implemented commercially.

“You only have to look at the slower-than-expected deployment of 3G services to see how far implementation lags behind innovation in the sector,” Noguet notes.

Nonetheless, one of the ORACLE partners, the Technical University of Dresden, has set up a spin-off company, called Inradios, to commercially exploit some of the technology developed in the project, while the partners are also actively involved in developing a new standard based on the results of their research.

ORACLE received funding under the ICT strand of the EU’s Sixth Framework Programme.


Story Source:

The above story is based on materials provided by ICT Results. Note: Materials may be edited for content and length.


Cite This Page:

ICT Results. "Averting Radio Spectrum Saturation, Opportunistically." ScienceDaily. ScienceDaily, 13 April 2009. <www.sciencedaily.com/releases/2009/04/090403114925.htm>.
ICT Results. (2009, April 13). Averting Radio Spectrum Saturation, Opportunistically. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/2009/04/090403114925.htm
ICT Results. "Averting Radio Spectrum Saturation, Opportunistically." ScienceDaily. www.sciencedaily.com/releases/2009/04/090403114925.htm (accessed July 25, 2014).

Share This




More Matter & Energy News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

TSA Administrator on Politics and Flight Bans

TSA Administrator on Politics and Flight Bans

AP (July 24, 2014) TSA administrator, John Pistole's took part in the Aspen Security Forum 2014, where he answered questions on lifting of the ban on flights into Israel's Tel Aviv airport and whether politics played a role in lifting the ban. (July 24) Video provided by AP
Powered by NewsLook.com
Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Algonquin Power Goes Activist on Its Target Gas Natural

Algonquin Power Goes Activist on Its Target Gas Natural

TheStreet (July 23, 2014) When The Deal's Amanda Levin exclusively reported that Gas Natural had been talking to potential suitors, the Ohio company responded with a flat denial, claiming its board had not talked to anyone about a possible sale. Lo and behold, Canadian utility Algonquin Power and Utilities not only had approached the company, but it did it three times. Its last offer was for $13 per share as Gas Natural's was trading at a 60-day moving average of about $12.50 per share. Now Algonquin, which has a 4.9% stake in Gas Natural, has taken its case to shareholders, calling on them to back its proposals or, possibly, a change in the target's board. Video provided by TheStreet
Powered by NewsLook.com
Robot Parking Valet Creates Stress-Free Travel

Robot Parking Valet Creates Stress-Free Travel

AP (July 23, 2014) 'Ray' the robotic parking valet at Dusseldorf Airport in Germany lets travelers to avoid the hassle of finding a parking spot before heading to the check-in desk. (July 23) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile: iPhone Android Web
          Follow: Facebook Twitter Google+
          Subscribe: RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins