Featured Research

from universities, journals, and other organizations

How The Retina Works: Like A Multi-layered Jigsaw Puzzle Of Receptive Fields

Date:
April 7, 2009
Source:
Salk Institute
Summary:
About 1.25 million neurons in the retina -- each of which views the world only through a small jagged window called a receptive field -- collectively form the seamless picture we rely on to navigate our environment. Receptive fields fit together like pieces of a puzzle, preventing "blind spots" and excessive overlap that could blur our perception of the world, according to researchers.

Each neuron in the retina views the world through a small, irregularly shaped window. These regions fit together like pieces of a puzzle, preventing "blind spot" and excessive overlap that could blur our perception of the world.
Credit: Courtesy of Dr. Jeffrey Gauthier, Salk Institute for Biological Studies

About 1.25 million neurons in the retina -- each of which views the world only through a small jagged window called a receptive field -- collectively form the seamless picture we rely on to navigate our environment. Receptive fields fit together like pieces of a puzzle, preventing "blind spots" and excessive overlap that could blur our perception of the world, according to researchers at the Salk Institute for Biological Studies.

In the April 7 issue of the journal PLOS Biology, the scientists say their findings suggest that the nervous system operates with higher precision than previously appreciated and that apparent irregularities in individual cells may actually be coordinated and finely tuned to make the most of the world around us.

Previously, the observed irregularities of individual receptive fields suggested that the collective visual coverage might be uneven and irregular, potentially posing a problem for high-resolution vision. "The striking coordination we found when we examined a whole population indicated that neuronal circuits in the retina may sample the visual scene with high precision, perhaps in a manner that approaches the optimum for high-resolution vision," says senior author E.J. Chichilnisky, Ph.D., an associate professor in the Systems Neurobiology Laboratories.

All visual information reaching the brain is transmitted by retinal ganglion cells. Each of the 20 or so distinct ganglion cell types is thought to transmit a complete visual image to the brain, because the receptive fields of each type form a regular lattice covering visual space. However, within each regular lattice, the individual cells' receptive fields have irregular and inconsistent shapes, which could potentially result in patchy coverage of the visual field.

To understand how the visual system overcomes this problem, postdoctoral researcher and first author Jeffrey L. Gauthier, Ph.D., used a microscopic electrode array to record the activity of ganglion cells in isolated patches of retina, the tissue lining the back of the eye.

After monitoring hundreds of ganglion cells over several hours, he distinguished between different cell types based on their light response properties. "Often people record from many cells simultaneously but they don't know which cell belongs to which type," says Gauthier. Without this information, he says, he wouldn't have been able to observe that the receptive fields of neighboring cells of a specific type interlock, complementing each others' irregular shapes.

"The receptive fields of all four cell types we examined were precisely coordinated," he says, "but we saw no coordination between cells of different types, emphasizing the importance of clearly distinguishing one cell type from another when studying sensory encoding by a population of neurons."

Researchers who also contributed to the work include postdoctoral fellows Greg D. Field, Ph.D., Martin Greschner, Ph.D., and Jonathon Shlens, Ph.D., all in the Chichilnisky Laboratory, as well as postdoctoral researcher Alexander Sher, Ph.D., and professor Alan M. Litke, Ph.D., both at the Santa Cruz Institute for Particle Physics, University of California, Santa Cruz.

This work was supported by the National Institutes of Health, the National Science Foundation, the Chapman Foundation, the Helen Hay Whitney Foundation, the Burroughs Wellcome Fund, the Deutscher Akademischer Austauschdienst and the McKnight Foundation.


Story Source:

The above story is based on materials provided by Salk Institute. Note: Materials may be edited for content and length.


Journal Reference:

  1. Jeffrey L. Gauthier, Greg D. Field, Alexander Sher, Martin Greschner, Jonathon Shlens, Alan M. Litke, E. J. Chichilnisky. Receptive Fields in Primate Retina Are Coordinated to Sample Visual Space More Uniformly. PLoS Biology, 2009; 7 (4): e63 DOI: 10.1371/journal.pbio.1000063

Cite This Page:

Salk Institute. "How The Retina Works: Like A Multi-layered Jigsaw Puzzle Of Receptive Fields." ScienceDaily. ScienceDaily, 7 April 2009. <www.sciencedaily.com/releases/2009/04/090406212837.htm>.
Salk Institute. (2009, April 7). How The Retina Works: Like A Multi-layered Jigsaw Puzzle Of Receptive Fields. ScienceDaily. Retrieved April 18, 2014 from www.sciencedaily.com/releases/2009/04/090406212837.htm
Salk Institute. "How The Retina Works: Like A Multi-layered Jigsaw Puzzle Of Receptive Fields." ScienceDaily. www.sciencedaily.com/releases/2009/04/090406212837.htm (accessed April 18, 2014).

Share This



More Mind & Brain News

Friday, April 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Study On Artists' Brain Shows They're 'Structurally Unique'

Study On Artists' Brain Shows They're 'Structurally Unique'

Newsy (Apr. 17, 2014) The brains of artists aren't really left-brain or right-brain, but rather have extra neural matter in visual and motor control areas. Video provided by Newsy
Powered by NewsLook.com
Is Apathy A Sign Of A Shrinking Brain?

Is Apathy A Sign Of A Shrinking Brain?

Newsy (Apr. 17, 2014) A recent study links apathetic feelings to a smaller brain. Researchers say the results indicate a need for apathy screening for at-risk seniors. Video provided by Newsy
Powered by NewsLook.com
Are School Dress Codes Too Strict?

Are School Dress Codes Too Strict?

AP (Apr. 16, 2014) Pushing the limits on style and self-expression is a rite of passage for teens and even younger kids. How far should schools go with their dress codes? The courts have sided with schools in an era when school safety is paramount. (April 16) Video provided by AP
Powered by NewsLook.com
Could Even Casual Marijuana Use Alter Your Brain?

Could Even Casual Marijuana Use Alter Your Brain?

Newsy (Apr. 16, 2014) A new study conducted by researchers at Northwestern and Harvard suggests even casual marijuana use can alter your brain. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins