Featured Research

from universities, journals, and other organizations

New Security And Medical Sensor Devices Made Possible By Fundamental Physics Development In Metallic Nanostructures

Date:
April 13, 2009
Source:
Imperial College London
Summary:
Scientists have designed tiny new sensor structures that could be used in novel security devices to detect poisons and explosives, or in highly sensitive medical sensors, according to new research.

An image of the metallic ring and disk. The scale bar shows 200 nanometres.
Credit: Image courtesy of Imperial College London

Scientists have designed tiny new sensor structures that could be used in novel security devices to detect poisons and explosives, or in highly sensitive medical sensors, according to research published tomorrow (8 April) in Nano Letters.

The new ‘nanosensors’, which are based on a fundamental science discovery in UK, Belgian and US research groups, could be tailor-made to instantly detect the presence of particular molecules, for example poisons or explosives in transport screening situations, or proteins in patients’ blood samples, with high sensitivity.

The researchers were led by Imperial College London physicists funded by the Engineering and Physical Sciences Research Council. The team showed that by putting together two specific ‘nanostructures’ made of gold or silver, they can make an early prototype device which, once optimised, should exhibit a highly sensitive ability to detect particular chemicals in the immediate surroundings.

The nanostructures are each about 500 times smaller than the width of a human hair. One is shaped like a flat circular disk while the other looks like a doughnut with a hole in the middle. When brought together they interact with light very differently to the way they behave on their own. The scientists have observed that when they are paired up they scatter some specific colours within white light much less, leading to an increased amount of light passing through the structure undisturbed. This is distinctly different to how both structures scatter light separately. This decrease in the interaction with light is in turn affected by the composition of molecules in close proximity to the structures. The researchers hope that this effect can be harnessed to produce sensor devices.

Lead researcher on the project Professor Stefan Maier from Imperial’s Department of Physics, and an Associate of Imperial’s Institute for Security Science and Technology, said:

"Pairing up these structures has a unique effect on the way they scatter light

– an effect which could be very useful if, as our computer simulations suggest, it is extremely sensitive to changes in surrounding environment. With further testing we hope to show that it is possible to harness this property to make a highly sensitive nanosensor."

Metal nanostructures have been used as sensors before, as they interact very strongly with light due to so-called localised plasmon resonances. But this is the first time a pair with such a carefully tailored interaction with light has been created.

The device could be tailored to detect different chemicals by decorating the nanostructure surface with specific ‘molecular traps’ that bind the chosen target molecules. Once bound, the target molecules would change the colours that the device absorbs and scatters, alerting the sensor to their presence. The team’s next step is to test whether the pair of nanostructures can detect chosen substances in lab experiments.

Professor Maier concludes: "This study is a beautiful example of how concepts from different areas of physics fertilise each other – in essence our nanosensor system is a classical analogue of electromagnetically induced transparency, a famous phenomenon from quantum mechanics."


Story Source:

The above story is based on materials provided by Imperial College London. Note: Materials may be edited for content and length.


Journal Reference:

  1. Verellen et al. Fano Resonances in Individual Coherent Plasmonic Nanocavities. Nano Letters, 2009; 090312170407019 DOI: 10.1021/nl9001876

Cite This Page:

Imperial College London. "New Security And Medical Sensor Devices Made Possible By Fundamental Physics Development In Metallic Nanostructures." ScienceDaily. ScienceDaily, 13 April 2009. <www.sciencedaily.com/releases/2009/04/090407075342.htm>.
Imperial College London. (2009, April 13). New Security And Medical Sensor Devices Made Possible By Fundamental Physics Development In Metallic Nanostructures. ScienceDaily. Retrieved April 17, 2014 from www.sciencedaily.com/releases/2009/04/090407075342.htm
Imperial College London. "New Security And Medical Sensor Devices Made Possible By Fundamental Physics Development In Metallic Nanostructures." ScienceDaily. www.sciencedaily.com/releases/2009/04/090407075342.htm (accessed April 17, 2014).

Share This



More Matter & Energy News

Thursday, April 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Small Reactors Could Be Future of Nuclear Energy

Small Reactors Could Be Future of Nuclear Energy

AP (Apr. 17, 2014) After the Fukushima nuclear disaster, the industry fell under intense scrutiny. Now, small underground nuclear power plants are being considered as the possible future of the nuclear energy. (April 17) Video provided by AP
Powered by NewsLook.com
Honda's New ASIMO Robot, More Human-Like Than Ever

Honda's New ASIMO Robot, More Human-Like Than Ever

AFP (Apr. 17, 2014) It walks and runs, even up and down stairs. It can open a bottle and serve a drink, and politely tries to shake hands with a stranger. Meet the latest ASIMO, Honda's humanoid robot. Duration: 00:54 Video provided by AFP
Powered by NewsLook.com
German Researchers Crack Samsung's Fingerprint Scanner

German Researchers Crack Samsung's Fingerprint Scanner

Newsy (Apr. 16, 2014) German researchers have used a fake fingerprint made from glue to bypass the fingerprint security system on Samsung's new Galaxy S5 smartphone. Video provided by Newsy
Powered by NewsLook.com
Porsche CEO Says Supercar Is Not Dead: Cue the Spyder 918

Porsche CEO Says Supercar Is Not Dead: Cue the Spyder 918

TheStreet (Apr. 16, 2014) The Porsche Spyder 918 proves that, in an automotive world obsessed with fuel efficiency, the supercar is not dead. Porsche North America CEO Detlev von Platen attributes the brand's consistent sales growth -- 21% in 2013 -- with an investment in new technology and expanded performance dynamics. The hybrid Spyder 918 has 887 horsepower and 944 lb-ft of torque, but it can run 18 miles on just an electric charge. The $845,000 vehicle is not a consumer-targeted vehicle but a brand statement. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins