Featured Research

from universities, journals, and other organizations

Quantum Computers Will Require Complex Software To Manage Errors

Date:
April 9, 2009
Source:
National Institute of Standards and Technology
Summary:
Highlighting another challenge to the development of quantum computers, theorists at NIST have shown that a type of software operation, proposed as a solution to fundamental problems with the computers' hardware, will not function as some designers had hoped.

While rudimentary is a fair description of this early computer—the National Bureau of Standards’ SEAC, built in 1950—prototype quantum computers have not even reached its level of sophistication. Theorists at NIST have demonstrated that quantum computer software will need to be more complex than some researchers had hoped, potentially slowing the devices’ development, but also allowing scientists to focus on more promising development pathways.
Credit: NIST

Highlighting another challenge to the development of quantum computers, theorists at the National Institute of Standards and Technology (NIST) have shown that a type of software operation, proposed as a solution to fundamental problems with the computers’ hardware, will not function as some designers had hoped.

Related Articles


Quantum computers—if they can ever be realized—will employ effects associated with atomic physics to solve otherwise intractable problems. But the NIST team has proved that the software in question, widely studied due to its simplicity and robustness to noise, is insufficient for performing arbitrary computations. This means that any software the computers use will have to employ far more complex and resource-intensive solutions to ensure the devices function effectively.

Unlike a conventional computer’s binary on-off switches, the building blocks of quantum computers, known as quantum bits, or “qubits,” have the mind-bending ability to exist in both “on” and “off” states simultaneously due to the so-called “superposition” principle of quantum physics. Once harnessed, the superposition principle should allow quantum computers to extract patterns from the possible outputs of a huge number of computations without actually performing all of them. This ability to extract overall patterns makes the devices potentially valuable for tasks such as codebreaking.

One issue, though, is that prototype quantum processors are prone to errors caused, for example, by noise from stray electric or magnetic fields. Conventional computers can guard against errors using techniques such as repetition, where the information in each bit is copied several times and the copies are checked against one another as the calculation proceeds. But this sort of redundancy is impossible in a quantum computer, where the laws of the quantum world forbid such information cloning.

To improve the efficiency of error correction, researchers are designing quantum computing architectures so as to limit the spread of errors. One of the simplest and most effective ways of ensuring this is by creating software that never permits qubits to interact if their errors might compound one another. Quantum software operations with this property are called “transversal encoded quantum gates.” NIST information theorist Bryan Eastin describes these gates as a solution both simple to employ and resistant to the noise of error-prone quantum processors. But the NIST team has proved mathematically that transversal gates cannot be used exclusively, meaning that more complex solutions for error management and correction must be employed.

Eastin says their result does not represent a setback to quantum computer development because researchers, unable to figure out how to employ transversal gates universally, have already developed other techniques for dealing with errors. “The findings could actually help move designers on to greener pastures,” he says. “There are some avenues of exploration that are less tempting now.”


Story Source:

The above story is based on materials provided by National Institute of Standards and Technology. Note: Materials may be edited for content and length.


Journal Reference:

  1. Eastin et al. Restrictions on Transversal Encoded Quantum Gate Sets. Physical Review Letters, 2009; 102 (11): 110502 DOI: 10.1103/PhysRevLett.102.110502

Cite This Page:

National Institute of Standards and Technology. "Quantum Computers Will Require Complex Software To Manage Errors." ScienceDaily. ScienceDaily, 9 April 2009. <www.sciencedaily.com/releases/2009/04/090408140219.htm>.
National Institute of Standards and Technology. (2009, April 9). Quantum Computers Will Require Complex Software To Manage Errors. ScienceDaily. Retrieved January 25, 2015 from www.sciencedaily.com/releases/2009/04/090408140219.htm
National Institute of Standards and Technology. "Quantum Computers Will Require Complex Software To Manage Errors." ScienceDaily. www.sciencedaily.com/releases/2009/04/090408140219.htm (accessed January 25, 2015).

Share This


More From ScienceDaily



More Computers & Math News

Sunday, January 25, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

No, A Google Exec Did Not Predict An Internet Apocalypse

No, A Google Exec Did Not Predict An Internet Apocalypse

Newsy (Jan. 24, 2015) — Earlier this week, a Google exec made headlines for saying "the Internet will disappear," but that doesn&apos;t quite mean what it sounds like. Video provided by Newsy
Powered by NewsLook.com
Tim Cook Made 8 Times Less Than Another Apple Exec In 2014

Tim Cook Made 8 Times Less Than Another Apple Exec In 2014

Newsy (Jan. 23, 2015) — Tim Cook&apos;s total compensation more than doubled in 2014 to $9.2 million, but his pay was still less than four other Apple executives. Video provided by Newsy
Powered by NewsLook.com
Smart Wristband to Shock Away Bad Habits

Smart Wristband to Shock Away Bad Habits

Reuters - Innovations Video Online (Jan. 23, 2015) — A Boston start-up is developing a wristband they say will help users break bad habits by jolting them with an electric shock. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
NTSB: Missing Planes' Black Boxes Should Transmit Wirelessly

NTSB: Missing Planes' Black Boxes Should Transmit Wirelessly

Newsy (Jan. 23, 2015) — In light of high-profile plane disappearances in the past year, the NTSB has called for changes to make finding missing aircraft easier. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins