Featured Research

from universities, journals, and other organizations

Fat Droplet Nanoparticle Delivers Tumor Suppressor Gene To Tumor And Metastatic Cells

Date:
April 21, 2009
Source:
Federation of American Societies for Experimental Biology
Summary:
The first systemic, nonviral, tumor-targeted, nanoparticle method designed to restore normal gene function to tumor cells while completely bypassing normal tissue has been developed. The nanoparticle is able to locate primary and hidden metastatic tumor cells and deliver its payload: a fully functioning copy of the P53 tumor suppressor gene.

Dr. Esther Chang describes the most recent developments in human trials of the first systemic, non-viral, tumor-targeted, nanoparticle method designed to restore normal gene function to tumor cells while completely bypassing normal tissue April 21 at an American Association of Anatomists (AAA) scientific session at Experimental Biology 2009 in New Orleans.

Dr. Chang, a molecular oncologist, and her colleagues at Georgetown University Medical Center's Lombardi Cancer Center, have developed a nanoparticle – about one thousandth smaller than a printed period -- that can travel through the blood stream. "Decorated" with a tumor-targeting antibody, the nanoparticle is able to locate primary and hidden metastatic tumor cells and deliver its payload: a fully functioning copy of the P53 tumor suppressor gene.

Normal cells have two copies of the functioning P53 gene. The protein produced by the P53 gene is activated to either coordinate the repair process in cells or induce cell suicide. Loss of normal p53 function results in malignant cell growth and has been linked to resistance to radiotherapy and chemotherapy in a number of cancers.

In earlier work using animal models, Dr. Chang's group delivered functional p53 genes to tumor cells and tumor metastases in 16 different types of cancer, including prostate, pancreatic, melanoma, breast cancer and head and neck cancer. The presence of the replacement genes dramatically improved the efficacy of conventional cancer therapy. That suggests that use of the P53 delivery system eventually would allow physicians to use a lower dose of therapies, achieving the same or enhanced therapeutic results but sharply diminishing the side effects so troublesome in many treatments.

Dr. Chang's nanoparticle delivery system is designed to reduce side effects in another way as well. When the job of reinstating a normal P53 suppressor gene is done, the nanoparticle – essentially a little fat droplet wrapped around the gene – simply melts away, unlike non-biodegradable delivery systems.

Clinical trials are now underway at the Mary Crowley Medical Research Center, affiliated with Baylor University at Dallas, under the direction of clinical trial principal investigator Dr. John Nemunaitis. The trial already has enrolled six patients with various cancers and anticipates a total of 14. Early results are promising, says Dr. Chang. In addition to evaluating the safety issues for which phase 1 trials are designed, investigators are seeing anti-tumor efficacy. Dr. Chang says she is hopeful that the gene therapy will become a first line treatment that will significantly reduce the probability of recurrent tumors.

Funding for this research includes that by the National Institutes of Health and by SynerGene Therapeutics, Inc.

Dr. Chang's presentation is called "Materializing the potential of nanomedicine via a tumor-targeting nanodelivery platform."


Story Source:

The above story is based on materials provided by Federation of American Societies for Experimental Biology. Note: Materials may be edited for content and length.


Cite This Page:

Federation of American Societies for Experimental Biology. "Fat Droplet Nanoparticle Delivers Tumor Suppressor Gene To Tumor And Metastatic Cells." ScienceDaily. ScienceDaily, 21 April 2009. <www.sciencedaily.com/releases/2009/04/090420182148.htm>.
Federation of American Societies for Experimental Biology. (2009, April 21). Fat Droplet Nanoparticle Delivers Tumor Suppressor Gene To Tumor And Metastatic Cells. ScienceDaily. Retrieved July 22, 2014 from www.sciencedaily.com/releases/2009/04/090420182148.htm
Federation of American Societies for Experimental Biology. "Fat Droplet Nanoparticle Delivers Tumor Suppressor Gene To Tumor And Metastatic Cells." ScienceDaily. www.sciencedaily.com/releases/2009/04/090420182148.htm (accessed July 22, 2014).

Share This




More Health & Medicine News

Tuesday, July 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Courts Conflicted Over Healthcare Law

Courts Conflicted Over Healthcare Law

AP (July 22, 2014) Two federal appeals courts issued conflicting rulings Tuesday on the legality of the federally-run healthcare exchange that operates in 36 states. (July 22) Video provided by AP
Powered by NewsLook.com
Why Do People Believe We Only Use 10 Percent Of Our Brains?

Why Do People Believe We Only Use 10 Percent Of Our Brains?

Newsy (July 22, 2014) The new sci-fi thriller "Lucy" is making people question whether we really use all our brainpower. But, as scientists have insisted for years, we do. Video provided by Newsy
Powered by NewsLook.com
Scientists Find New Way To Make Human Platelets

Scientists Find New Way To Make Human Platelets

Newsy (July 22, 2014) Boston scientists have discovered a new way to create fully functioning human platelets using a bioreactor and human stem cells. Video provided by Newsy
Powered by NewsLook.com
Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins