Featured Research

from universities, journals, and other organizations

New Design Strategy For Brain Implants Paves The Way To Multi-electrode Deep-brain Stimulation

Date:
April 29, 2009
Source:
Interuniversity Microelectronics Centre (IMEC)
Summary:
Scientists present a new design strategy for brain implants, which it used to create a prototype multi-electrode stimulation & recording probe for deep-brain stimulation.

IMEC’s design and modeling strategy allows developing advanced brain implants consisting of multiple electrodes enabling simultaneous stimulation and recording.
Credit: IMEC

At this week’s Design, Automation & Test in Europe (DATE) conference, IMEC presents a new design strategy for brain implants, which it used to create a prototype multi-electrode stimulation & recording probe for deep-brain stimulation. With this development, IMEC highlights the opportunities in the healthcare market for design tool developers.

Related Articles


Brain implants for electrical stimulation of specific brain areas are used as a last-resort therapy for brain disorders such as Parkinson's disease,tremor, or obsessive-compulsive disorder. Today’s deep-brain stimulation probes use millimeter-size electrodes. These stimulate, in a highly unfocused way, a large area of the brain and have significant unwanted side effects.

Wolfgang Eberle, Senior Scientist and project manager at IMEC’s bioelectronics research group: “To have a more precise stimulation and recording, we need electrodes that are as small as individual brain cells (neurons). Such small electrodes can be made with semiconductor process technology, appropriate design tools, and advanced electronic signal processing. At DATE, we want to bring this message to the design community, showing the huge opportunities that the healthcare sector offers.”

IMEC’s design and modeling strategy allows developing advanced brain implants consisting of multiple electrodes enabling simultaneous stimulation and recording. This strategy was used to create prototype probes with 10 micrometer-size electrodes and various electrode topologies.

The design strategy relies on finite-element modeling of the electrical field distribution around the brain probe. This was done with the multi-physics simulation software COMSOL 3.4 and 3.5. The COMSOL tools also enabled investigating the mechanical properties of the probe during surgical insertion and the effects of temperature. The results indicate that adapting the penetration depth and field asymmetry allow steering the electrical field around the probe. This results in high-precision stimulation. Also key to the design approach is developing a mixed-signal compensation scheme enabling multi-electrode probes capable of stimulation as well as recording. This is needed to realize closed-loop systems.

These new design approaches open up possibilities for more effective stimulation with less side effects, reduced energy consumption due to focusing the stimulation current on the desired brain target, and closed-loop control adapting the stimulation based on the recorded effect.


Story Source:

The above story is based on materials provided by Interuniversity Microelectronics Centre (IMEC). Note: Materials may be edited for content and length.


Cite This Page:

Interuniversity Microelectronics Centre (IMEC). "New Design Strategy For Brain Implants Paves The Way To Multi-electrode Deep-brain Stimulation." ScienceDaily. ScienceDaily, 29 April 2009. <www.sciencedaily.com/releases/2009/04/090421080351.htm>.
Interuniversity Microelectronics Centre (IMEC). (2009, April 29). New Design Strategy For Brain Implants Paves The Way To Multi-electrode Deep-brain Stimulation. ScienceDaily. Retrieved March 5, 2015 from www.sciencedaily.com/releases/2009/04/090421080351.htm
Interuniversity Microelectronics Centre (IMEC). "New Design Strategy For Brain Implants Paves The Way To Multi-electrode Deep-brain Stimulation." ScienceDaily. www.sciencedaily.com/releases/2009/04/090421080351.htm (accessed March 5, 2015).

Share This


More From ScienceDaily



More Mind & Brain News

Thursday, March 5, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Former NFL Players Donate Brains to Science

Former NFL Players Donate Brains to Science

Reuters - US Online Video (Mar. 3, 2015) Super Bowl champions Sidney Rice and Steve Weatherford donate their brains, post-mortem, to scientific research into repetitive brain trauma. Jillian Kitchener reports. Video provided by Reuters
Powered by NewsLook.com
Alzheimer's Protein Plaque Found In 20-Year-Olds

Alzheimer's Protein Plaque Found In 20-Year-Olds

Newsy (Mar. 3, 2015) Researchers found an abnormal protein associated with Alzheimer&apos;s disease in the brains of 20-year-olds. Video provided by Newsy
Powered by NewsLook.com
This Nasal Treatment Could Help Ease Migraine Pain

This Nasal Treatment Could Help Ease Migraine Pain

Newsy (Mar. 2, 2015) Researchers gave lidocaine to 112 patients, and about 88 percent of the subjects said they needed less migraine-relief medicine the next day. Video provided by Newsy
Powered by NewsLook.com
How Facebook Use Can Lead To Depression

How Facebook Use Can Lead To Depression

Newsy (Mar. 1, 2015) Margaret Duffy of the University of Missouri talks about her study on the social network and the envy and depression that Facebook use can cause. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins