Featured Research

from universities, journals, and other organizations

Astronomers Discover Youngest And Lowest Mass Dwarfs In Solar Neighborhood

Date:
April 24, 2009
Source:
Royal Astronomical Society (RAS)
Summary:
Astronomers have found three brown dwarfs with estimated masses of less than 10 times that of Jupiter, making them among the youngest and lowest mass sub-stellar objects detected in the solar neighbourhood to date.

IC 348, the star-forming region where the brown dwarfs were discovered.
Credit: Adam Block and Tim Puckett

Astronomers have found three brown dwarfs with estimated masses of less than 10 times that of Jupiter, making them among the youngest and lowest mass sub-stellar objects detected in the solar neighbourhood to date.

The observations were made by a team of astronomers working at the Laboratoire d'Astrophysique de l'Observatoire de Grenoble (LAOG), France, using the Canada-France-Hawaii Telescope (CFHT). Andrew Burgess will be presenting the discovery at the European Week of Astronomy and Space Science at the University of Hertfordshire, Hatfield, on Wednesday 22nd April.

The dwarfs were found in a star forming region named IC 348, which lies almost 1000 light years from the Solar System towards the constellation of Perseus. This cluster is approximately 3 million years old – extremely young compared to our 4.5 billion year old Sun – which makes it a good location in order to search for the lowest mass brown dwarfs. The dwarfs are isolated in space, which means that they are not orbiting a star, although they are gravitationally bound to IC 348. Their atmospheres all show evidence of methane absorption which was used to select and identify these young objects.

"There has been some controversy about identifying young, low mass brown dwarfs in this region. An object of a similar mass was discovered in 2002, but some groups have argued that it is an older, cooler brown dwarf in the foreground coinciding with the line of sight. The fact that we have detected three candidate low-mass dwarfs towards IC 348 supports the finding that these really are very young objects," said Burgess.

The team set out to find a population of these brown dwarfs in order to help theoreticians develop more accurate models for the distribution of mass in a newly-formed population, from high mass stars to brown dwarfs, which is needed to test current star formation theories. The discovery of the dwarfs in IC 348 has allowed them to set new limits on the lowest mass objects.

"Finding three candidate low-mass dwarfs towards IC 348 backs up predictions for how many low-mass objects develop in a new population of stars. Brown dwarfs cool with age and current models estimate that their surfaces are approximately 900-1000 degrees Kelvin (about 600-700 degrees Celsius). That’s extremely cool for objects that have just formed, which implies that they have the lowest masses of any of this type of object that we’ve seen to date," said Burgess.


Story Source:

The above story is based on materials provided by Royal Astronomical Society (RAS). The original article was written by Anita Heward. Note: Materials may be edited for content and length.


Cite This Page:

Royal Astronomical Society (RAS). "Astronomers Discover Youngest And Lowest Mass Dwarfs In Solar Neighborhood." ScienceDaily. ScienceDaily, 24 April 2009. <www.sciencedaily.com/releases/2009/04/090422085801.htm>.
Royal Astronomical Society (RAS). (2009, April 24). Astronomers Discover Youngest And Lowest Mass Dwarfs In Solar Neighborhood. ScienceDaily. Retrieved August 22, 2014 from www.sciencedaily.com/releases/2009/04/090422085801.htm
Royal Astronomical Society (RAS). "Astronomers Discover Youngest And Lowest Mass Dwarfs In Solar Neighborhood." ScienceDaily. www.sciencedaily.com/releases/2009/04/090422085801.htm (accessed August 22, 2014).

Share This




More Space & Time News

Friday, August 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Did Russia Really Find Plankton On The ISS? NASA Not So Sure

Did Russia Really Find Plankton On The ISS? NASA Not So Sure

Newsy (Aug. 21, 2014) Russian cosmonauts say they've found evidence of sea plankton on the International Space Station's windows. NASA is a little more skeptical. Video provided by Newsy
Powered by NewsLook.com
Space to Ground: Hello Georges

Space to Ground: Hello Georges

NASA (Aug. 18, 2014) Europe's ATV-5 delivers new science and the crew tests smart SPHERES. Questions or comments? Use #spacetoground to talk to us. Video provided by NASA
Powered by NewsLook.com
Tiny Satellites, Like The One Tossed From ISS, On The Rise

Tiny Satellites, Like The One Tossed From ISS, On The Rise

Newsy (Aug. 18, 2014) The Chasqui I, hand-delivered into orbit by a Russian cosmonaut, is one of hundreds of small satellites set to go up in the next few years. Video provided by Newsy
Powered by NewsLook.com
This Week @ NASA, August 15, 2014

This Week @ NASA, August 15, 2014

NASA (Aug. 15, 2014) Carbon Observatory’s First Data, ATV-5 Delivers Cargo, Cygnus Departs Station and more... Video provided by NASA
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins