New! Sign up for our free email newsletter.
Science News
from research organizations

New 167-processor Chip Is Super-fast, Ultra Energy-efficient

Date:
April 24, 2009
Source:
University of California - Davis
Summary:
A new, extremely energy-efficient processor chip provides breakthrough speeds for a variety of computing tasks. The chip, dubbed AsAP, is ultra-small, fully reprogrammable and highly configurable, so it can be widely adapted to a number of applications.
Share:
FULL STORY

A new, extremely energy-efficient processor chip that provides breakthrough speeds for a variety of computing tasks has been designed by a group at UC Davis. The chip, dubbed AsAP, is ultra-small, fully reprogrammable and highly configurable, so it can be widely adapted to a number of applications.

The chip is designed for digital signal processing. While not the principal kind of processor chip used in desktop computers, digital signal processing chips are found in a myriad of everyday and specialized devices such as cell phones, MP3 music players, video equipment, anti-lock brakes and ultrasound and MRI medical imaging machines.

Maximum clock speed for the 167-processor AsAP is 1.2 gigahertz (GHz), but at slower speeds its energy efficiency soars. Twelve chips working together could perform more than half-a-trillion operations per second (.52 Tera-ops/sec) while using less power than a 7-watt light bulb.

“A battery powering this chip will typically last from several times to 75 times longer than it would under the same workload when powering some of the common commercially available digital signal processing chips,” said Bevan Baas, associate professor of electrical and computer engineering and leader of the design team. “At the same time, with our targeted applications, we’re getting several times to 10 times better speed than what is currently available — all with a much smaller chip. To the best of our knowledge, this is the highest clock-rate processor chip designed at any university.”

Built with industry-standard fabrication technology and design tools, the chip embodies a number of novel architectural and circuit features, Baas explained. Throughout the design process, his group took energy efficiency and high speed into consideration. “These were two of our main objectives, which we never gave up on during the planning stages. And all those choices added up,” he said.

Baas’ group has written a number of software applications for the chip, which has been fabricated by the international electronics company STMicrotronics. It took one student just three months to write “a fully compliant Wi-Fi transmitter,” Baas said. They have also written a Wi-Fi receiver and several complex components of an H.264 video encoder. After testing the chip extensively, it has worked without a glitch, Baas added.

The group made a brief announcement about the chip in June 2008 at the Symposium on VLSI Circuits in Honolulu, and details of its design have just been published in the April issue of IEEE Journal of Solid-State Circuits.

The following collaborators on the design of AsAP were graduate students in Baas’ group when they did the work: Dean Truong, Wayne Cheng, Tinoosh Mohsenin, Zhiyi Yu, Anthony Jacobson, Gouri Landge, Michael Meeuwsen, Christine Watnik, Anh Tran, Zhibin Xiao Jeremy Webb, Eric Work, Jeremy Webb and Paul Mejia.

Support for the work came from STMicroelectronics, Intel Inc., University of California MICRO, the National Science Foundation, Semiconductor Research Corporation, IntellaSys and the Vietnam Education Foundation.


Story Source:

Materials provided by University of California - Davis. Note: Content may be edited for style and length.


Cite This Page:

University of California - Davis. "New 167-processor Chip Is Super-fast, Ultra Energy-efficient." ScienceDaily. ScienceDaily, 24 April 2009. <www.sciencedaily.com/releases/2009/04/090422103741.htm>.
University of California - Davis. (2009, April 24). New 167-processor Chip Is Super-fast, Ultra Energy-efficient. ScienceDaily. Retrieved April 19, 2024 from www.sciencedaily.com/releases/2009/04/090422103741.htm
University of California - Davis. "New 167-processor Chip Is Super-fast, Ultra Energy-efficient." ScienceDaily. www.sciencedaily.com/releases/2009/04/090422103741.htm (accessed April 19, 2024).

Explore More

from ScienceDaily

RELATED STORIES