Featured Research

from universities, journals, and other organizations

PER:PER Protein Pair Required For Circadian Clock Function

Date:
April 29, 2009
Source:
Queen Mary, University of London
Summary:
Scientists have discovered a new protein complex operating in fruit fly circadian clocks, which may also help to regulate our own biological clocks.

Scientists from Queen Mary, University of London have discovered a new protein complex operating in fruit fly circadian clocks, which may also help to regulate our own biological clocks.

Circadian clocks are thought to have evolved to enable organisms to match their behaviour to specific time slots during the 24 hour day. They are synchronised with our surrounding environment via natural light or temperature cycles.

Professor Ralf Stanewsky and his team from Queen Mary's School of Biological and Chemical Sciences study the circadian clocks of Drosophila, a type of fruit fly. The flies' body-clocks are regulated by two proteins called Period (PER) and Timeless (TIM).

The current model of circadian clocks in flies involves the formation of complexes between these two different clock proteins, known as heterodimers (TIM:PER). Similarly, mammalian circadian clocks (including those in humans) also rely on a heterodimer complex made up of the Period (PER) and Cryptochrome (CRY) proteins.

But now, a new study performed in Professor Stanewsky's lab shows that a complex made of two identical Period proteins, known as a PER:PER homodimer is also crucial for circadian clock function in flies. Writing in the journal PLoS Biology, Stanewsky explains how his team designed a PER protein which could only join with TIM, not with itself.

"We generated a mutation in the PER protein which prevented the formation of the PER:PER dimer, but not that of the PER:TIM heterodimer," he explains. "These mutant flies showed drastically impaired behaviour and molecular clock function, suggesting that PER homodimers are vital for the function of circadian clocks."

The mutant fly PER proteins were designed using structural protein data generated by Dr Eva Wolf at the MPI in Dortmund (Germany). In the same issue of PLoS Biology the Wolf group reports findings indicating that the PER:PER homodimer could also be an important feature of circadian clocks in mammals, including humans.


Story Source:

The above story is based on materials provided by Queen Mary, University of London. Note: Materials may be edited for content and length.


Cite This Page:

Queen Mary, University of London. "PER:PER Protein Pair Required For Circadian Clock Function." ScienceDaily. ScienceDaily, 29 April 2009. <www.sciencedaily.com/releases/2009/04/090429091642.htm>.
Queen Mary, University of London. (2009, April 29). PER:PER Protein Pair Required For Circadian Clock Function. ScienceDaily. Retrieved August 20, 2014 from www.sciencedaily.com/releases/2009/04/090429091642.htm
Queen Mary, University of London. "PER:PER Protein Pair Required For Circadian Clock Function." ScienceDaily. www.sciencedaily.com/releases/2009/04/090429091642.htm (accessed August 20, 2014).

Share This




More Mind & Brain News

Wednesday, August 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Charter Schools Alter Post-Katrina Landscape

Charter Schools Alter Post-Katrina Landscape

AP (Aug. 20, 2014) Nine years after Hurricane Katrina, charter schools are the new reality of public education in New Orleans. The state of Louisiana took over most of the city's public schools after the killer storm in 2005. (Aug. 20) Video provided by AP
Powered by NewsLook.com
Researcher Testing on-Field Concussion Scanners

Researcher Testing on-Field Concussion Scanners

AP (Aug. 19, 2014) Four Texas high school football programs are trying out an experimental system designed to diagnose concussions on the field. The technology is in response to growing concern over head trauma in America's most watched sport. (Aug. 19) Video provided by AP
Powered by NewsLook.com
Kids' Drawings At Age 4 Linked To Intelligence At Age 14

Kids' Drawings At Age 4 Linked To Intelligence At Age 14

Newsy (Aug. 19, 2014) A study by King's College London says there's a link between how well kids draw at age 4 and how intelligent they are later in life. Video provided by Newsy
Powered by NewsLook.com
Mental, Neurological Disabilities Up 21% Among Kids

Mental, Neurological Disabilities Up 21% Among Kids

Newsy (Aug. 18, 2014) New numbers show a decade's worth of changes in the number of kids with disabilities. They suggest mental disabilities are up; physical ones are down. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins