Science News

... from universities, journals, and other research organizations

PER:PER Protein Pair Required For Circadian Clock Function

Apr. 29, 2009 — Scientists from Queen Mary, University of London have discovered a new protein complex operating in fruit fly circadian clocks, which may also help to regulate our own biological clocks.


Share This:

Circadian clocks are thought to have evolved to enable organisms to match their behaviour to specific time slots during the 24 hour day. They are synchronised with our surrounding environment via natural light or temperature cycles.

Professor Ralf Stanewsky and his team from Queen Mary's School of Biological and Chemical Sciences study the circadian clocks of Drosophila, a type of fruit fly. The flies' body-clocks are regulated by two proteins called Period (PER) and Timeless (TIM).

The current model of circadian clocks in flies involves the formation of complexes between these two different clock proteins, known as heterodimers (TIM:PER). Similarly, mammalian circadian clocks (including those in humans) also rely on a heterodimer complex made up of the Period (PER) and Cryptochrome (CRY) proteins.

But now, a new study performed in Professor Stanewsky's lab shows that a complex made of two identical Period proteins, known as a PER:PER homodimer is also crucial for circadian clock function in flies. Writing in the journal PLoS Biology, Stanewsky explains how his team designed a PER protein which could only join with TIM, not with itself.

"We generated a mutation in the PER protein which prevented the formation of the PER:PER dimer, but not that of the PER:TIM heterodimer," he explains. "These mutant flies showed drastically impaired behaviour and molecular clock function, suggesting that PER homodimers are vital for the function of circadian clocks."

The mutant fly PER proteins were designed using structural protein data generated by Dr Eva Wolf at the MPI in Dortmund (Germany). In the same issue of PLoS Biology the Wolf group reports findings indicating that the PER:PER homodimer could also be an important feature of circadian clocks in mammals, including humans.

Share this story on Facebook, Twitter, and Google:

Other social bookmarking and sharing tools:

|

Story Source:

The above story is based on materials provided by Queen Mary, University of London.

Note: Materials may be edited for content and length. For further information, please contact the source cited above.


APA

MLA

Note: If no author is given, the source is cited instead.

Search ScienceDaily

Number of stories in archives: 140,690

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily's archives for related news topics,
the latest news stories, reference articles, science videos, images, and books.

Recommend ScienceDaily on Facebook, Twitter, and Google:

Other social bookmarking and sharing services:

|

 
Interested in ad-free access? If you'd like to read ScienceDaily without ads, let us know!
  more breaking science news

Social Networks


Follow ScienceDaily on Facebook, Twitter,
and Google:

Recommend ScienceDaily on Facebook, Twitter, and Google +1:

Other social bookmarking and sharing tools:

|

Breaking News

... from NewsDaily.com

  • more science news

In Other News ...

  • more top news

Science Video News


Waking up Teens

Teenagers' morning drowsiness is often caused by out-of-tune body clocks, in a condition known as "delayed sleep phase syndrome." Scientists now say. ...  > full story

Strange Science News

 

Free Subscriptions

... from ScienceDaily

Get the latest science news with our free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Feedback

... we want to hear from you!

Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?