Featured Research

from universities, journals, and other organizations

Progress Toward Artificial Tissue?

Date:
May 16, 2009
Source:
Wiley-Blackwell
Summary:
Researchers have developed a novel, highly porous, sponge-like material whose mechanical properties closely resemble those of biological soft tissues.

A team of Australian and Korean researchers led by Geoffrey M. Spinks and Seon Jeong Kim has now developed a novel, highly porous, sponge-like material whose mechanical properties closely resemble those of biological soft tissues. It consists of a robust network of DNA strands and carbon nanotubes.
Credit: Copyright Wiley-VCH

For modern implants and the growth of artificial tissue and organs, it is important to generate materials with characteristics that closely emulate nature. However, the tissue in our bodies has a combination of traits that are very hard to recreate in synthetic materials: It is both soft and very tough.

A team of Australian and Korean researchers led by Geoffrey M. Spinks and Seon Jeong Kim has now developed a novel, highly porous, sponge-like material whose mechanical properties closely resemble those of biological soft tissues. It consists of a robust network of DNA strands and carbon nanotubes.

Soft tissues, such as tendons, muscles, arteries, and skin or other organs, obtain their mechanical support from the extracellular matrix, a network of protein-based nanofibers. Different protein morphologies in the extracellular matrix produce tissue with a wide range of stiffness. Implants and scaffolding for tissue growth require porous, soft materials -- which are usually very fragile. Because many biological tissues are regularly subjected to intense mechanical loads, it is also important that the implant material have comparable elasticity in order to avoid inflammation. At the same time, the material must be very strong and resilient, or it may give out.

The new concept uses DNA strands as a matrix; the strands completely “wrap” the scaffold-forming carbon nanotubes in the presence of an ionic liquid, networking them to form a gel. This gel can be spun: just as silk and synthetic fibers can be wet-spun for textiles, the gel can be made into very fine threads when injected into a special bath. The dried fibers have a porous, sponge-like structure and consist of a network of intertwined 50 nm-wide nanofibers. Soaking in a calcium chloride solution further cross-links the DNA, causing the fibers to become denser and more strongly connected.

These spongy fibers resemble the collagen fiber networks of the biological extracellular matrix. They can also be knotted, braided, or woven into textile-like structures. This results in materials that are as elastic as the softest natural tissues while simultaneously deriving great strength from the robust DNA links.

An additional advantage is the electrical conductivity of the new material, which can thus also be used in electrodes for mechanical actuators, energy storage, and sensors. For example, the researchers were able to produce a hydrogen peroxide sensor. The carbon nanotubes catalyze the oxidation of hydrogen peroxide, which results in a measurable current. Hydrogen peroxide plays a role in normal heart function and certain heart diseases. A robust sensor with elasticity similar to the heart muscle would be of great help in researching these relationships.


Story Source:

The above story is based on materials provided by Wiley-Blackwell. Note: Materials may be edited for content and length.


Journal Reference:

  1. Geoffrey M. Spinks, Seon Jeong Kim et al. Tough Supersoft Sponge Fibers with Tunable Stiffness from a DNA Self-Assembly Technique. Angewandte Chemie International Edition, DOI: 10.1002/anie.200804788

Cite This Page:

Wiley-Blackwell. "Progress Toward Artificial Tissue?." ScienceDaily. ScienceDaily, 16 May 2009. <www.sciencedaily.com/releases/2009/05/090515104227.htm>.
Wiley-Blackwell. (2009, May 16). Progress Toward Artificial Tissue?. ScienceDaily. Retrieved April 20, 2014 from www.sciencedaily.com/releases/2009/05/090515104227.htm
Wiley-Blackwell. "Progress Toward Artificial Tissue?." ScienceDaily. www.sciencedaily.com/releases/2009/05/090515104227.htm (accessed April 20, 2014).

Share This



More Matter & Energy News

Sunday, April 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Why Did Nike Fire Most Of Its Nike FuelBand Team?

Why Did Nike Fire Most Of Its Nike FuelBand Team?

Newsy (Apr. 19, 2014) Nike fired most of its Digital Sport hardware team, the group behind Nike's FuelBand device. Could Apple or an overcrowded market be behind layoffs? Video provided by Newsy
Powered by NewsLook.com
Small Reactors Could Be Future of Nuclear Energy

Small Reactors Could Be Future of Nuclear Energy

AP (Apr. 17, 2014) After the Fukushima nuclear disaster, the industry fell under intense scrutiny. Now, small underground nuclear power plants are being considered as the possible future of the nuclear energy. (April 17) Video provided by AP
Powered by NewsLook.com
Horseless Carriage Introduced at NY Auto Show

Horseless Carriage Introduced at NY Auto Show

AP (Apr. 17, 2014) An electric car that proponents hope will replace horse-drawn carriages in New York City has also been revealed at the auto show. (Apr. 17) Video provided by AP
Powered by NewsLook.com
Honda's New ASIMO Robot, More Human-Like Than Ever

Honda's New ASIMO Robot, More Human-Like Than Ever

AFP (Apr. 17, 2014) It walks and runs, even up and down stairs. It can open a bottle and serve a drink, and politely tries to shake hands with a stranger. Meet the latest ASIMO, Honda's humanoid robot. Duration: 00:54 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins