Featured Research

from universities, journals, and other organizations

How The Body Differentiates Between A Burn And A Cut

Date:
May 22, 2009
Source:
California Institute of Technology
Summary:
You can tell without looking whether you've been stuck by a pin or burnt by a match. But how? In research that overturns conventional wisdom, scientists have shown that this sensory discrimination begins in the skin at the very earliest stages of neuronal information processing, with different populations of sensory neurons -- called nociceptors -- responding to different kinds of painful stimuli.

You can tell without looking whether you've been stuck by a pin or burnt by a match. But how? In research that overturns conventional wisdom, a team of scientists from the California Institute of Technology (Caltech) and the University of California, San Francisco (UCSF), have shown that this sensory discrimination begins in the skin at the very earliest stages of neuronal information processing, with different populations of sensory neurons--called nociceptors--responding to different kinds of painful stimuli.

"Conventional wisdom was that the nociceptive neurons in the skin can't tell the difference between heat and mechanical pain, like a pin prick," says David Anderson, Seymour Benzer Professor of Biology, a Howard Hughes Medical Institute (HHMI) Investigator, and one of the paper's lead authors. "The idea was that the skin is a dumb sensor of anything unpleasant, and that higher brain areas disentangle one pain modality from another, to tell you if you've been scorched or scratched."

This conventional wisdom came from recording the electrical responses of nociceptive neurons, where it was shown that these neurons are capable of sensing pretty much every kind of painful stimulus--from pin pricks to heat to cold. But this, Anderson notes, was not sufficient to understand the control of pain-avoidance behavior. "We were asking the cells what the cells can sense, not asking the animal what the cells can sense," he explained.

And so Anderson and coprincipal investigator Allan Basbaum, chair of the Department of Anatomy at UCSF, decided to ask the animal. To do so, they created a genetically engineered mouse in which specific populations of pain-sensing neurons can be selectively destroyed. They were then able to see if the mouse continued to respond to different types of stimuli by pulling its paw away when exposed to a relatively gentle heat source or poked with a nylon fishing line.

What the researchers found was that, when they killed off a certain population of nociceptor neurons, the mice stopped responding to being poked, but still responded to heat. Conversely, when the researchers injected a toxin to destroy a different population of neurons, the mice stopped responding to heat, but their sense of poke remained intact.

"This tells us that the fibers that mediate the response to being poked are neither necessary nor sufficient for a behavioral response to heat," Anderson explains, "and vice versa for the fibers that mediate the response to heat."

In addition, Anderson notes, neither of these two classes of sensory neurons seem to be required for responding to a painful cold stimulus, like dry ice. Research into pinpointing that population of cells is ongoing.

"This tells us that the discernment of different types of painful stimuli doesn't happen only in the brain--it starts in the skin, which is therefore much smarter than we thought," says Anderson. "That's a pretty heretical point of view."

It's also a potentially useful point of view, as Anderson points out. "If doctors want to repair or replace damaged nerve fibers in conditions such as diabetic neuropathy," he explains, "they need to make sure they're replacing the right kind of nerve fibers."

In addition to Anderson, the paper's coauthors include graduate student Daniel Cavanaugh from UCSF, postdoctoral scholar Hyosang Lee and HHMI Research Specialist Liching Lo from Caltech, Shannon Shields from UCSF (now at the Hospital Nacional de Paraplejicos in Toledo, Spain), and Mark Zylka, a former postdoctoral fellow at Caltech now on the faculty at the University of North Carolina, Chapel Hill.

This research was funded by grants from the National Institutes of Health, the National Alliance for Research on Schizophrenia and Affective Disorders, the Searle Scholars Program, the Whitehall, Klingenstein, Sloan and Rita Allen Foundations, the Christopher and Dana Reeve Foundation, and the Howard Hughes Medical Institute.


Story Source:

The above story is based on materials provided by California Institute of Technology. Note: Materials may be edited for content and length.


Journal Reference:

  1. Cavanaugh et al. Distinct subsets of unmyelinated primary sensory fibers mediate behavioral responses to noxious thermal and mechanical stimuli. Proceedings of the National Academy of Sciences, 2009; DOI: 10.1073/pnas.0901507106

Cite This Page:

California Institute of Technology. "How The Body Differentiates Between A Burn And A Cut." ScienceDaily. ScienceDaily, 22 May 2009. <www.sciencedaily.com/releases/2009/05/090519152442.htm>.
California Institute of Technology. (2009, May 22). How The Body Differentiates Between A Burn And A Cut. ScienceDaily. Retrieved October 2, 2014 from www.sciencedaily.com/releases/2009/05/090519152442.htm
California Institute of Technology. "How The Body Differentiates Between A Burn And A Cut." ScienceDaily. www.sciencedaily.com/releases/2009/05/090519152442.htm (accessed October 2, 2014).

Share This



More Health & Medicine News

Thursday, October 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Pregnancy Spacing Could Have Big Impact On Autism Risks

Pregnancy Spacing Could Have Big Impact On Autism Risks

Newsy (Oct. 1, 2014) A new study says children born less than one year and more than five years after a sibling can have an increased risk for autism. Video provided by Newsy
Powered by NewsLook.com
Robotic Hair Restoration

Robotic Hair Restoration

Ivanhoe (Oct. 1, 2014) A new robotic procedure is changing the way we transplant hair. The ARTAS robot leaves no linear scarring and provides more natural results. Video provided by Ivanhoe
Powered by NewsLook.com
Insertable Cardiac Monitor

Insertable Cardiac Monitor

Ivanhoe (Oct. 1, 2014) A heart monitor the size of a paperclip that can save your life. The “Reveal Linq” allows a doctor to monitor patients with A-Fib on a continuous basis for up to 3 years! Video provided by Ivanhoe
Powered by NewsLook.com
Attacking Superbugs

Attacking Superbugs

Ivanhoe (Oct. 1, 2014) Two weapons hospitals can use to attack superbugs. Scientists in Ireland created a new gel resistant to superbugs, and a robot that can disinfect a room in minutes. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins