Featured Research

from universities, journals, and other organizations

New Evolutionary Computing Developments Optimize Complex Problem Solving

Date:
May 21, 2009
Source:
Facultad de Informática de la Universidad Politécnica de Madrid
Summary:
Scientists have been working on the design and implementation of an evolutionary computing platform capable of integrating classical and new techniques to together optimize complex problem solving.

A group of researchers from the Department of Computer Systems Architecture and Technology (DATSI) at the UPM's School of Computing has for several years been working, in partnership with Madrid's Supercomputing and Visualization Centre (CeSViMa), on the design and implementation of an evolutionary computing platform capable of integrating classical and new techniques to together optimize complex problem solving.

The platform is based on evolutionary algorithms that optimize the search for solutions to complex scientific and engineering problems. These results are applicable to many fields, like molecular chemistry, materials resistance, robotics or games theory.

This research line was developed under the leadership of professors José María Peña Sánchez and Antonio Latorre de la Fuente, and has resulted in several publications and final-year projects, including Manuel Zaforas Martín's report on the implementation of this platform, known as Multiple Offspring Sampling (MOS).

Evolutionary algorithms are a family of algorithms within the artificial intelligence (AI) world that are useful for solving non-linear and very complex search and optimization problems, where there is a trade-off between the quality of the solutions and the required computation time. The members of this class of problems range from classical mathematical challenges to real-world scientific and engineering problems. Generally, we can use these methods to tackle problems about which little is known a priori and that would otherwise be intractable.

These methods are inspired by the theory of evolution postulated by Darwin in 1859. Continuing the biological metaphor, a population of candidate solutions "evolves" as if they were individuals until they arrive at the best possible solution. Several techniques implement these principles in one way or another, and each technique has its particularities, strengths and weaknesses.

New methodology: MOS

What the UPM School of Computing researchers have managed to do is develop a methodology, called MOS, that can simultaneously use and intelligently combine different evolutionary techniques and get the best out of each one. This way, MOS is capable of operating with several evolutionary models, such as the popular genetic algorithms (GA), estimation of distribution algorithms (EDA) based on probabilistic models or more recent techniques like differential evolution (DE).

The MOS methodology abstracts the each evolutionary algorithm's mechanisms for generating new offspring and encapsulates them in what is called a technique. Additionally, it defines new concepts like technique "quality". Quality is determined by how good or bad the behaviour of the technique is depending on any characteristic that is to be improved in the new individuals. Also quality dynamically defines each technique's participation in the evolutionary process. This way, the techniques work together and achieve better results than they would have individually, solving complex problems faster and more accurately.

This research has been possible thanks to a partnership with CeSViMa, also based at the UPM's Montegancedo Campus. CeSViMa owns Spain's second-most powerful computer. Thanks to experiments run on the machine that has a massive computational capacity, the researchers were able to analyse the strengths of these algorithms. They were put to the task of solving very complex mathematical problems that no conventional computer would be able to solve.

At present the line of research is still open with several doctoral theses in the making. The group is working on both adding new techniques and improving the technique hybridization processes.


Story Source:

The above story is based on materials provided by Facultad de Informática de la Universidad Politécnica de Madrid. Note: Materials may be edited for content and length.


Cite This Page:

Facultad de Informática de la Universidad Politécnica de Madrid. "New Evolutionary Computing Developments Optimize Complex Problem Solving." ScienceDaily. ScienceDaily, 21 May 2009. <www.sciencedaily.com/releases/2009/05/090520092745.htm>.
Facultad de Informática de la Universidad Politécnica de Madrid. (2009, May 21). New Evolutionary Computing Developments Optimize Complex Problem Solving. ScienceDaily. Retrieved April 17, 2014 from www.sciencedaily.com/releases/2009/05/090520092745.htm
Facultad de Informática de la Universidad Politécnica de Madrid. "New Evolutionary Computing Developments Optimize Complex Problem Solving." ScienceDaily. www.sciencedaily.com/releases/2009/05/090520092745.htm (accessed April 17, 2014).

Share This



More Matter & Energy News

Thursday, April 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Small Reactors Could Be Future of Nuclear Energy

Small Reactors Could Be Future of Nuclear Energy

AP (Apr. 17, 2014) — After the Fukushima nuclear disaster, the industry fell under intense scrutiny. Now, small underground nuclear power plants are being considered as the possible future of the nuclear energy. (April 17) Video provided by AP
Powered by NewsLook.com
Honda's New ASIMO Robot, More Human-Like Than Ever

Honda's New ASIMO Robot, More Human-Like Than Ever

AFP (Apr. 17, 2014) — It walks and runs, even up and down stairs. It can open a bottle and serve a drink, and politely tries to shake hands with a stranger. Meet the latest ASIMO, Honda's humanoid robot. Duration: 00:54 Video provided by AFP
Powered by NewsLook.com
German Researchers Crack Samsung's Fingerprint Scanner

German Researchers Crack Samsung's Fingerprint Scanner

Newsy (Apr. 16, 2014) — German researchers have used a fake fingerprint made from glue to bypass the fingerprint security system on Samsung's new Galaxy S5 smartphone. Video provided by Newsy
Powered by NewsLook.com
Porsche CEO Says Supercar Is Not Dead: Cue the Spyder 918

Porsche CEO Says Supercar Is Not Dead: Cue the Spyder 918

TheStreet (Apr. 16, 2014) — The Porsche Spyder 918 proves that, in an automotive world obsessed with fuel efficiency, the supercar is not dead. Porsche North America CEO Detlev von Platen attributes the brand's consistent sales growth -- 21% in 2013 -- with an investment in new technology and expanded performance dynamics. The hybrid Spyder 918 has 887 horsepower and 944 lb-ft of torque, but it can run 18 miles on just an electric charge. The $845,000 vehicle is not a consumer-targeted vehicle but a brand statement. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins