Featured Research

from universities, journals, and other organizations

'Colossal' Magnetic Effect Under Pressure: Another Revolution In Computing Technology?

Date:
June 7, 2009
Source:
Carnegie Institute Of Science
Summary:
Millions of people today carry around pocket-sized music players capable of holding thousands of songs, thanks to the discovery 20 years ago of a phenomenon known as the "giant magnetoresistance effect," which made it possible to pack more data onto smaller and smaller hard drives. Now scientists are on the trail of another phenomenon, called the "colossal magnetoresistance effect" (CMR) which is up to a thousand times more powerful and could trigger another revolution in computing technology.

The structure models for F-type and A-type magnetic ordering in manganite in response to pressure. The arrows inside orbitals indicate the spin direction of d electrons.
Credit: Image courtesy of Carnegie Institute Of Science

Millions of people today carry around pocket-sized music players capable of holding thousands of songs, thanks to the discovery 20 years ago of a phenomenon known as the “giant magnetoresistance effect,” which made it possible to pack more data onto smaller and smaller hard drives. Now scientists are on the trail of another phenomenon, called the “colossal magnetoresistance effect” (CMR) which is up to a thousand times more powerful and could trigger another revolution in computing technology.

Related Articles


Understanding, and ultimately controlling, this effect and the intricate coupling between electrical conductivity and magnetism in these materials remains a challenge, however, because of competing interactions in manganites, the materials in which CMR was discovered. In the June 12, 2009, issue of the journal Physical Review Letters, a team of researchers report new progress in using high pressure techniques to unravel the subtleties of this coupling.

To study the magnetic properties of manganites, a form of manganese oxide, the research team, led by Yang Ding of the Carnegie Institution’s High Pressure Synergetic Center (HPSync), applied techniques called x-ray magnetic circular dichroism (XMCD) and angular-dispersive diffraction at the Advanced Photon Source (APS) of Argonne National Laboratory in Illinois. High pressure XMCD is a newly developed technique that uses high-brilliance circularly polarized x-rays to probe the magnetic state of a material under pressures of many hundreds of thousands of atmospheres inside a diamond anvil cell.

The discovery of CMR in manganite compounds has already made manganites invaluable components in technological applications. An example is magnetic tunneling junctions in soon-to-be marketed magnetic random access memory (MRAM), where the tunneling of electrical current between two thin layers of manganite material separated by an electrical insulator depends on the relative orientation of magnetization in the manganite layers. Unlike conventional RAM, MRAM could yield instant-on computers. However, no current theories can fully explain the rich physics, including CMR effects, seen in manganites.

“The challenge is that there are competing interactions in manganites among the electrons that determine magnetic properties,” said Ding. “And the properties are also affected by external stimuli, such as, temperature, pressure, magnetic field, and chemical doping.”

“Pressure has a unique ability to tune the electron interactions in a clean and theoretically transparent manner,” he added. “It is a direct and effective means for manipulating the behavior of electrons and could provide valuable information on the magnetic and electronic properties of manganite systems. But of all the effects, pressure effects have been the least explored.”

The researchers found that when a manganite was subjected to conditions above 230,000 times atmospheric pressure it underwent a transition in which its magnetic ordering changed from a ferromagnetic type (electron spins aligned) to an antiferromagnetic type (electron spins opposed). This transition was accompanied by a non-uniform structural distortion called the Jahn-Teller effect.

“It is quite interesting to observe that uniform compression leads to a non-uniform structural change in a manganite, which was not predicted by theory,” said Ding, “Working with Michel van Veenendaal’s theoretical group at APS, we found that the predominant effect of pressure on this material is to increase the strength of an interaction known as superexchange relative to another known as the double exchange interaction. A consequence of this is that the overall ferromagnetic interactions in the system occur in a plane (two dimensions) rather than in three dimensions, which produces a non-uniform redistribution of electrons. This leads to the structural distortion.”

Another intriguing response of manganite to high pressure revealed by the experiments is that the magnetic transition did not occur throughout the sample at the same time. Instead, it spread incrementally.

“The results imply that even at ambient conditions, the manganite might already have two separate magnetic phases at the nanometer scale, with pressure favoring the growth of the antiferro-magnetic phase at the expense of the ferromagnetic phase,” said coauthor Daniel Haskel, a physicist at Argonne’s APS. “Manipulating phase separation at the nanoscale level is at the very core of nanotechnology and manganites provide an excellent playground to pursue this objective”.

“This work not only displays another interesting emergent phenomenon arising from the interplay between charge, spin, orbital and lattice in a strongly correlated electron system,” commented coauthor Dr. Ho-kwang Mao of Carnegie’s Geophysical Laboratory, Director of HPSync,” but it also manifests the role of pressure in magnetism studies of dense matter.”


Story Source:

The above story is based on materials provided by Carnegie Institute Of Science. Note: Materials may be edited for content and length.


Journal Reference:

  1. Yang Ding, Daniel Haskel, Yuan-Chieh Tseng, Eiji Kaneshita, Michel van Veenendaal, John Mitchell, Stanislav V. Sinogeikin, Vitali Prakapenka, and Ho-kwang Mao. Pressure-induced magnetic transition in manganite (La0.75Ca0.25MnO3). Physical Review Letters, June 2009

Cite This Page:

Carnegie Institute Of Science. "'Colossal' Magnetic Effect Under Pressure: Another Revolution In Computing Technology?." ScienceDaily. ScienceDaily, 7 June 2009. <www.sciencedaily.com/releases/2009/06/090605125340.htm>.
Carnegie Institute Of Science. (2009, June 7). 'Colossal' Magnetic Effect Under Pressure: Another Revolution In Computing Technology?. ScienceDaily. Retrieved November 26, 2014 from www.sciencedaily.com/releases/2009/06/090605125340.htm
Carnegie Institute Of Science. "'Colossal' Magnetic Effect Under Pressure: Another Revolution In Computing Technology?." ScienceDaily. www.sciencedaily.com/releases/2009/06/090605125340.htm (accessed November 26, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Wednesday, November 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

NASA's First 3-D Printer In Space Creates Its First Object

NASA's First 3-D Printer In Space Creates Its First Object

Newsy (Nov. 26, 2014) The International Space Station is now using a proof-of-concept 3D printer to test additive printing in a weightless, isolated environment. Video provided by Newsy
Powered by NewsLook.com
Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Reuters - Innovations Video Online (Nov. 26, 2014) Innovative recycling project in La Paz separates city waste and converts plastic garbage into school furniture made from 'plastiwood'. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Who Will Failed Nuclear Talks Hurt Most?

Who Will Failed Nuclear Talks Hurt Most?

Reuters - Business Video Online (Nov. 25, 2014) With no immediate prospect of sanctions relief for Iran, and no solid progress in negotiations with the West over the country's nuclear programme, Ciara Lee asks why talks have still not produced results and what a resolution would mean for both parties. Video provided by Reuters
Powered by NewsLook.com
Flying Enthusiast Converts Real-Life Aircraft Cockpit Into Simulator

Flying Enthusiast Converts Real-Life Aircraft Cockpit Into Simulator

Reuters - Innovations Video Online (Nov. 25, 2014) A virtual flying enthusiast converts parts of a written-off Airbus aircraft into a working flight simulator in his northern Slovenian home. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins