Featured Research

from universities, journals, and other organizations

Hybrid Scanner Brings Molecular Functioning To The Forefront

Date:
June 16, 2009
Source:
Society of Nuclear Medicine
Summary:
A major barrier to developing a hybrid positron emission tomography/magnetic resonance imaging system could be removed by using a novel approach for reconstructing data, according to researchers.

A major barrier to developing a hybrid positron emission tomography (PET)/magnetic resonance (MR) imaging system could be removed by using a novel approach for reconstructing data, according to researchers at SNM's 56th Annual Meeting in Toronto.

Many researchers view fused PET/MR as an important next step in improving imaging capabilities and believe that PET/MR could become a viable alternative to hybrid PET/computed tomography (CT) systems.

"Providing both PET and MRI capabilities in a single room could be a powerful tool for research and, eventually, for patient care," said Andrι Salomon, Molecular Imaging Systems, Philips Research, Aachen, Germany. "Our successful approach to addressing a major shortcoming in data reconstruction could be an important breakthrough in the development of such a system."

A combined PET/MR system could deliver the specific molecular information related to cell surface reactors, enzymes and gene expression that PET provides. At the same time, physicians could use MRI to see important anatomical data, soft-tissue contrast and information about perfusion and permeability. However, a combined PET/MRI cannot provide accurate, reliable images unless it includes a method to account for PET attenuation. Attenuation refers to the scattering of photons that should be detected by PET scanners, but fall out of their range or are absorbed by the body instead.

In combined PET/CT systems, attenuation mapping is performed routinely based on available CT transmission data. Researchers are working on many alternatives to provide attenuation for PET/MR imaging. Most of these involve methods of segmentation, atlas-based registration and computer learning techniques using databases with MR and corresponding CT images.

In this study, a novel new method for estimating attenuation uses a data reconstruction approach that simultaneously computes the activity and the attenuation distribution using the MR image as a geometrical reference. In this way, the true physical attenuation of the photons provided by the PET data is measured. Preliminary results from simulated and measured clinical data that were compared to reference data from CT attenuation maps indicate excellent agreement between the two techniques. In addition, performing time-of-flight reconstruction—which measures how long gamma rays produced by radionuclides reach PET detectors—also improves accuracy.


Story Source:

The above story is based on materials provided by Society of Nuclear Medicine. Note: Materials may be edited for content and length.


Cite This Page:

Society of Nuclear Medicine. "Hybrid Scanner Brings Molecular Functioning To The Forefront." ScienceDaily. ScienceDaily, 16 June 2009. <www.sciencedaily.com/releases/2009/06/090615144329.htm>.
Society of Nuclear Medicine. (2009, June 16). Hybrid Scanner Brings Molecular Functioning To The Forefront. ScienceDaily. Retrieved October 22, 2014 from www.sciencedaily.com/releases/2009/06/090615144329.htm
Society of Nuclear Medicine. "Hybrid Scanner Brings Molecular Functioning To The Forefront." ScienceDaily. www.sciencedaily.com/releases/2009/06/090615144329.htm (accessed October 22, 2014).

Share This



More Matter & Energy News

Wednesday, October 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Newsy (Oct. 21, 2014) — If you've ever watched "Back to the Future Part II" and wanted to get your hands on a hoverboard, well, you might soon be in luck. Video provided by Newsy
Powered by NewsLook.com
Robots to Fly Planes Where Humans Can't

Robots to Fly Planes Where Humans Can't

Reuters - Innovations Video Online (Oct. 21, 2014) — Researchers in South Korea are developing a robotic pilot that could potentially replace humans in the cockpit. Unlike drones and autopilot programs which are configured for specific aircraft, the robots' humanoid design will allow it to fly any type of plane with no additional sensors. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
Graphene Paint Offers Rust-Free Future

Graphene Paint Offers Rust-Free Future

Reuters - Innovations Video Online (Oct. 21, 2014) — British scientists have developed a prototype graphene paint that can make coatings which are resistant to liquids, gases, and chemicals. The team says the paint could have a variety of uses, from stopping ships rusting to keeping food fresher for longer. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com
China Airlines Swanky New Plane

China Airlines Swanky New Plane

Buzz60 (Oct. 21, 2014) — China Airlines debuted their new Boeing 777, and it's more like a swanky hotel bar than an airplane. Enjoy high-tea, a coffee bar, and a full service bar with cocktails and spirits, and lie-flat in your reclining seats. Sean Dowling (@SeanDowlingTV) has the details. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins