Featured Research

from universities, journals, and other organizations

Concrete Creep Slowed: Work Paves Way For Lightweight, Vastly More Durable Infrastructure

Date:
June 25, 2009
Source:
Massachusetts Institute of Technology
Summary:
Civil engineers have for the first time identified what causes the most frequently used building material on earth -- concrete -- to gradually deform, decreasing its durability and shortening the lifespan of infrastructures such as bridges and nuclear waste containment vessels.

The image shows the imprint left by a nanoindenter in a particle of cement paste. The round blob at the top center is actually an extremely fine piece of dust on the surface.
Credit: Photo / Chris Bobko

MIT civil engineers have for the first time identified what causes the most frequently used building material on earth — concrete — to gradually deform, decreasing its durability and shortening the lifespan of infrastructures such as bridges and nuclear waste containment vessels.

In a paper published in the Proceedings of the National Academy of Sciences (PNAS) online Early Edition the week of June 15, researchers say that concrete creep (the technical term for the time-dependent deformation that occurs in concrete when it is subjected to load) is caused by the rearrangement of particles at the nano-scale.

"Finally, we can explain how creep occurs," said Professor Franz-Josef Ulm, co-author of the PNAS paper. "We can't prevent creep from happening, but if we slow the rate at which it occurs, this will increase concrete's durability and prolong the life of the structures. Our research lays the foundation for rethinking concrete engineering from a nanoscopic perspective."

This research comes at a time when the American Society of Civil Engineers has assigned an aggregate grade of D to U.S. infrastructure, much of which is made of concrete. It likely will lead to concrete infrastructure capable of lasting hundreds of years rather than tens, which will bring enormous cost-savings and decreased concrete-related CO2 emissions. An estimated 5 to 8 percent of all human-generated atmospheric CO2 worldwide comes from the concrete industry.

Ulm, who has spent nearly two decades studying the mechanical behavior of concrete and its primary component, cement paste, has in the past several years focused on its nano-structure. This led to his publication of a paper in 2007 that said the basic building block of cement paste at the nano-scale — calcium-silicate-hydrates, or C-S-H — is granular in nature. The paper explained that C-S-H naturally self-assembles at two structurally distinct but chemically similar phases when mixed with water, each with a fixed packing density close to one of the two maximum densities allowed by nature for spherical objects (64 percent for the lower density and 74 percent for high).

In the new research revealed in the PNAS paper, Ulm and co-author Matthieu Vandamme explain that concrete creep comes about when these nano-meter-sized C-S-H particles rearrange into altered densities: some looser and others more tightly packed.

They also explain that a third, more dense phase of C-S-H can be induced by carefully manipulating the cement mix with other minerals such as silica fumes, a waste material of the aluminum industry. These reacting fumes form additional smaller particles that fit into the spaces between the nano-granules of C-S-H, spaces that were formerly filled with water. This has the effect of increasing the density of C-S-H to up to 87 percent, which in turn greatly hinders the movement of the C-S-H granules over time.

"There is a search by industry to find an optimal method for creating such ultra-high-density materials based on packing considerations in confined spaces, a method that is also environmentally sustainable," said Ulm. "The addition of silica fumes is one known method in use for changing the density of concrete; we now know from the nanoscale packing why the addition of fumes reduces the creep of concrete. From a nanoscale perspective, other means now exist to achieve such highly packed, slow-creeping materials."

"The insight gained into the nanostructure puts concrete on equal footing with high-tech materials, whose microstructure can be nanoengineered to meet specific performance criteria: strength, durability and a reduced environmental footprint," said Vandamme, who earned a PhD from MIT's Department of Civil and Environmental Engineering in 2008 and is now on the faculty of the Ecole des Ponts ParisTech, Universitι Paris-Est.

In their PNAS paper, the researchers show experimentally that the rate of creep is logarithmic, which means slowing creep increases durability exponentially. They demonstrate mathematically that creep can be slowed by a rate of 2.6. That would have a truly remarkable effect on durability: a containment vessel for nuclear waste built to last 100 years with today's concrete could last up to 16,000 years if made with an ultra-high-density (UHD) concrete.

Ulm stressed that UHD concrete could alter structural designs, as well as have enormous environmental implications, because concrete is the most widely produced man-made material on earth: 20 billion tons per year worldwide with a 5 percent increase annually. More durable concrete means that less building material and less frequent renovations will be required.

"The thinner the structure, the more sensitive it is to creep, so up until now, we have been unable to build large-scale lightweight, durable concrete structures," said Ulm. "With this new understanding of concrete, we could produce filigree: light, elegant, strong structures that will require far less material."

Ulm and Vandamme achieved their research findings using a nano-indentation device, which allows them to poke and prod the C-S-H (or to use the terminology of civil engineering, apply load) and measure in minutes creep properties that are usually measured in year-long creep experiments at the macroscopic scale.

This work was funded in part by the Lafarge Group, a French building materials producer.

 


Story Source:

The above story is based on materials provided by Massachusetts Institute of Technology. Note: Materials may be edited for content and length.


Cite This Page:

Massachusetts Institute of Technology. "Concrete Creep Slowed: Work Paves Way For Lightweight, Vastly More Durable Infrastructure." ScienceDaily. ScienceDaily, 25 June 2009. <www.sciencedaily.com/releases/2009/06/090615171507.htm>.
Massachusetts Institute of Technology. (2009, June 25). Concrete Creep Slowed: Work Paves Way For Lightweight, Vastly More Durable Infrastructure. ScienceDaily. Retrieved April 23, 2014 from www.sciencedaily.com/releases/2009/06/090615171507.htm
Massachusetts Institute of Technology. "Concrete Creep Slowed: Work Paves Way For Lightweight, Vastly More Durable Infrastructure." ScienceDaily. www.sciencedaily.com/releases/2009/06/090615171507.htm (accessed April 23, 2014).

Share This



More Matter & Energy News

Wednesday, April 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Is North Korea Planning Nuclear Test #4?

Is North Korea Planning Nuclear Test #4?

Newsy (Apr. 22, 2014) — South Korean officials say North Korea is preparing to conduct another nuclear test, but is Pyongyang just bluffing this time? Video provided by Newsy
Powered by NewsLook.com
China Falls for 4x4s at Beijing Auto Show

China Falls for 4x4s at Beijing Auto Show

AFP (Apr. 22, 2014) — The urban 4x4 is the latest must-have for Chinese drivers, whose conversion to the cult of the SUV is the talking point of this year's Beijing auto show. Duration: 00:40 Video provided by AFP
Powered by NewsLook.com
Lytro Introduces 'Illum,' A Professional Light-Field Camera

Lytro Introduces 'Illum,' A Professional Light-Field Camera

Newsy (Apr. 22, 2014) — The light-field photography engineers at Lytro unveiled their next innovation: a professional DSLR-like camera called "Illum." Video provided by Newsy
Powered by NewsLook.com
3 Reasons Why Harley Davidson Is Selling Tons of Epic Hogs

3 Reasons Why Harley Davidson Is Selling Tons of Epic Hogs

TheStreet (Apr. 22, 2014) — Sales of motorcycles have continued to ride back from the depths of hell known as the Great Recession. Excluding scooters, sales of motorcycles increased 3% in 2013. In units, however, at 465,000 sold last year, the total remained about 50% below the peak hit in 2007. Industry leader Harley Davidson’s shareholders have benefited both by the industry recovery and positive headlines emanating from the company. Belus Capital Advisors CEO Brian Sozzi takes you beyond the headlines of the motorcycle maker. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins