Featured Research

from universities, journals, and other organizations

Concrete Creep Slowed: Work Paves Way For Lightweight, Vastly More Durable Infrastructure

Date:
June 25, 2009
Source:
Massachusetts Institute of Technology
Summary:
Civil engineers have for the first time identified what causes the most frequently used building material on earth -- concrete -- to gradually deform, decreasing its durability and shortening the lifespan of infrastructures such as bridges and nuclear waste containment vessels.

The image shows the imprint left by a nanoindenter in a particle of cement paste. The round blob at the top center is actually an extremely fine piece of dust on the surface.
Credit: Photo / Chris Bobko

MIT civil engineers have for the first time identified what causes the most frequently used building material on earth — concrete — to gradually deform, decreasing its durability and shortening the lifespan of infrastructures such as bridges and nuclear waste containment vessels.

In a paper published in the Proceedings of the National Academy of Sciences (PNAS) online Early Edition the week of June 15, researchers say that concrete creep (the technical term for the time-dependent deformation that occurs in concrete when it is subjected to load) is caused by the rearrangement of particles at the nano-scale.

"Finally, we can explain how creep occurs," said Professor Franz-Josef Ulm, co-author of the PNAS paper. "We can't prevent creep from happening, but if we slow the rate at which it occurs, this will increase concrete's durability and prolong the life of the structures. Our research lays the foundation for rethinking concrete engineering from a nanoscopic perspective."

This research comes at a time when the American Society of Civil Engineers has assigned an aggregate grade of D to U.S. infrastructure, much of which is made of concrete. It likely will lead to concrete infrastructure capable of lasting hundreds of years rather than tens, which will bring enormous cost-savings and decreased concrete-related CO2 emissions. An estimated 5 to 8 percent of all human-generated atmospheric CO2 worldwide comes from the concrete industry.

Ulm, who has spent nearly two decades studying the mechanical behavior of concrete and its primary component, cement paste, has in the past several years focused on its nano-structure. This led to his publication of a paper in 2007 that said the basic building block of cement paste at the nano-scale — calcium-silicate-hydrates, or C-S-H — is granular in nature. The paper explained that C-S-H naturally self-assembles at two structurally distinct but chemically similar phases when mixed with water, each with a fixed packing density close to one of the two maximum densities allowed by nature for spherical objects (64 percent for the lower density and 74 percent for high).

In the new research revealed in the PNAS paper, Ulm and co-author Matthieu Vandamme explain that concrete creep comes about when these nano-meter-sized C-S-H particles rearrange into altered densities: some looser and others more tightly packed.

They also explain that a third, more dense phase of C-S-H can be induced by carefully manipulating the cement mix with other minerals such as silica fumes, a waste material of the aluminum industry. These reacting fumes form additional smaller particles that fit into the spaces between the nano-granules of C-S-H, spaces that were formerly filled with water. This has the effect of increasing the density of C-S-H to up to 87 percent, which in turn greatly hinders the movement of the C-S-H granules over time.

"There is a search by industry to find an optimal method for creating such ultra-high-density materials based on packing considerations in confined spaces, a method that is also environmentally sustainable," said Ulm. "The addition of silica fumes is one known method in use for changing the density of concrete; we now know from the nanoscale packing why the addition of fumes reduces the creep of concrete. From a nanoscale perspective, other means now exist to achieve such highly packed, slow-creeping materials."

"The insight gained into the nanostructure puts concrete on equal footing with high-tech materials, whose microstructure can be nanoengineered to meet specific performance criteria: strength, durability and a reduced environmental footprint," said Vandamme, who earned a PhD from MIT's Department of Civil and Environmental Engineering in 2008 and is now on the faculty of the Ecole des Ponts ParisTech, Université Paris-Est.

In their PNAS paper, the researchers show experimentally that the rate of creep is logarithmic, which means slowing creep increases durability exponentially. They demonstrate mathematically that creep can be slowed by a rate of 2.6. That would have a truly remarkable effect on durability: a containment vessel for nuclear waste built to last 100 years with today's concrete could last up to 16,000 years if made with an ultra-high-density (UHD) concrete.

Ulm stressed that UHD concrete could alter structural designs, as well as have enormous environmental implications, because concrete is the most widely produced man-made material on earth: 20 billion tons per year worldwide with a 5 percent increase annually. More durable concrete means that less building material and less frequent renovations will be required.

"The thinner the structure, the more sensitive it is to creep, so up until now, we have been unable to build large-scale lightweight, durable concrete structures," said Ulm. "With this new understanding of concrete, we could produce filigree: light, elegant, strong structures that will require far less material."

Ulm and Vandamme achieved their research findings using a nano-indentation device, which allows them to poke and prod the C-S-H (or to use the terminology of civil engineering, apply load) and measure in minutes creep properties that are usually measured in year-long creep experiments at the macroscopic scale.

This work was funded in part by the Lafarge Group, a French building materials producer.


Story Source:

The above story is based on materials provided by Massachusetts Institute of Technology. Note: Materials may be edited for content and length.


Cite This Page:

Massachusetts Institute of Technology. "Concrete Creep Slowed: Work Paves Way For Lightweight, Vastly More Durable Infrastructure." ScienceDaily. ScienceDaily, 25 June 2009. <www.sciencedaily.com/releases/2009/06/090615171507.htm>.
Massachusetts Institute of Technology. (2009, June 25). Concrete Creep Slowed: Work Paves Way For Lightweight, Vastly More Durable Infrastructure. ScienceDaily. Retrieved October 23, 2014 from www.sciencedaily.com/releases/2009/06/090615171507.htm
Massachusetts Institute of Technology. "Concrete Creep Slowed: Work Paves Way For Lightweight, Vastly More Durable Infrastructure." ScienceDaily. www.sciencedaily.com/releases/2009/06/090615171507.htm (accessed October 23, 2014).

Share This



More Matter & Energy News

Thursday, October 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Reuters - Innovations Video Online (Oct. 22, 2014) — Inspired by the way a chameleon changes its colour to disguise itself; scientists in Poland want to replace traditional camouflage paint with thousands of electrochromic plates that will continuously change colour to blend with its surroundings. The first PL-01 concept tank prototype will be tested within a few years, with scientists predicting that a similar technology could even be woven into the fabric of a soldiers' clothing making them virtually invisible to the naked eye. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Jet Sales Lift Boeing Profit 18 Pct.

Jet Sales Lift Boeing Profit 18 Pct.

Reuters - Business Video Online (Oct. 22, 2014) — Strong jet demand has pushed Boeing to raise its profit forecast for the third time, but analysts were disappointed by its small cash flow. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Internet of Things Aims to Smarten Your Life

Internet of Things Aims to Smarten Your Life

AP (Oct. 22, 2014) — As more and more Bluetooth-enabled devices are reaching consumers, developers are busy connecting them together as part of the Internet of Things. (Oct. 22) Video provided by AP
Powered by NewsLook.com
What Is Magic Leap, And Why Is It Worth $500M?

What Is Magic Leap, And Why Is It Worth $500M?

Newsy (Oct. 22, 2014) — Magic Leap isn't publicizing much more than a description of its product, but it’s been enough for Google and others to invest more than $500M. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins