Featured Research

from universities, journals, and other organizations

Peripheral Nerve Repair With Fat Precursor Cells Led To Wider Nerves And Less Muscle Atrophy

Date:
June 16, 2009
Source:
Cell Transplantation Center of Excellence for Aging and Brain Repair
Summary:
Multipotent, abundant, easily isolated fat (adipose) precursor cells (APCs) demonstrate an ability to differentiate in vitro into cartilage chondrogenic, boneosteogenic, fatadipogenic and muscle tissue myogenic cell types. A new study shows that when transplanted APCs can improve nerve regeneration and functional recovery in the injured peripheral nerves of laboratory rats.

Multipotent, abundant, easily isolated fat (adipose) precursor cells (APCs) demonstrate an ability to differentiate in vitro into cartilage chondrogenic, boneosteogenic, fatadipogenic and muscle tissue myogenic cell types. This study shows that when transplanted APCs can improve nerve regeneration and functional recovery in the injured peripheral nerves of laboratory rats.

Related Articles


Conduit-guided, human-derived APCs survived up to 12 weeks in the injured peripheral nerves of laboratory animals and formed more robust nerve cells compared to controls not receiving cell transplants.

To determine if guided fat (adipose) precursor cells (APCs) could improve nerve regeneration and functional recovery, researchers at the University of Pittsburgh (USA) used biodegradable nerve guides to transplant APCs into the injured peripheral nerves of laboratory rats.

"Adipose tissues, shown to be multipotent, have also been shown to be an abundant source of post-natal precursor cells that are relatively easy to isolate from fat tissue and in sufficient amounts to be injected immediately post-isolation," said Dr. Kacey Marra, lead author of a study published in the current issue of the journal Cell Transplantation (18:2).

Adipose precursor cells, said Marra and co-authors, have demonstrated an ability to differentiate in vitro into cartilage (chondrogenic), bone (osteogenic), fat (adipogenic) and muscle (myogenic) cell types.

Control groups for this study included those with no treatment, those receiving an autograft but no nerve guide tube, and those receiving an autograft and nerve guide tube but no APC transplant in the guide tube.

Researchers noted that the "gold standard" for nerve repair is the autograft to repair nerve gaps. Pre-clinical studies have shown that including Schwann cells within nerve conduits can enhance nerve regeneration. However, the incorporation of Schwann cells requires a second surgery, renders a secondary nerve nonfunctional, and requires Schwann cells in high numbers that are clinically challenging to obtain.

According to the researchers, significant differences in the sciatic functional index (SFI) were observed three weeks post-injury in the autografted, APC-transplanted group using nerve guides over a control group in which nerve guides were left empty. Researchers also observed the formation of a more robust nerve accompanied by modestly decreased muscle atrophy in the APC-transplanted group. No differences were observed after 12 weeks, however.

"We found that full regeneration of the sciatic nerve occurred in the rats receiving the autograft, the guide, and the guide loaded with APCs. No regeneration was observed in any of the rats in which the defect was left untreated," said Marra.

Their results also showed that transplanted human-derived APCs survived for up to 12 weeks in the injured peripheral nerve and formed a more robust nerve with nerve cells more than double the size of those formed using the conduit alone.

"The versatility of adult precursor cells, such as those from adipose, for the treatment of a number of disorders is promising and this study demonstrates their potential benefit towards nerve repair," said section editor Dr. John Sladek, professor of pediatrics and neuroscience at the University of Colorado School of Medicine.


Story Source:

The above story is based on materials provided by Cell Transplantation Center of Excellence for Aging and Brain Repair. Note: Materials may be edited for content and length.


Cite This Page:

Cell Transplantation Center of Excellence for Aging and Brain Repair. "Peripheral Nerve Repair With Fat Precursor Cells Led To Wider Nerves And Less Muscle Atrophy." ScienceDaily. ScienceDaily, 16 June 2009. <www.sciencedaily.com/releases/2009/06/090616121349.htm>.
Cell Transplantation Center of Excellence for Aging and Brain Repair. (2009, June 16). Peripheral Nerve Repair With Fat Precursor Cells Led To Wider Nerves And Less Muscle Atrophy. ScienceDaily. Retrieved October 26, 2014 from www.sciencedaily.com/releases/2009/06/090616121349.htm
Cell Transplantation Center of Excellence for Aging and Brain Repair. "Peripheral Nerve Repair With Fat Precursor Cells Led To Wider Nerves And Less Muscle Atrophy." ScienceDaily. www.sciencedaily.com/releases/2009/06/090616121349.htm (accessed October 26, 2014).

Share This



More Health & Medicine News

Sunday, October 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Texas Nurse Nina Pham Cured of Ebola

Texas Nurse Nina Pham Cured of Ebola

AFP (Oct. 25, 2014) — An American nurse who contracted Ebola while caring for a Liberian patient in Texas has been declared free of the virus and will leave the hospital. Duration: 01:01 Video provided by AFP
Powered by NewsLook.com
Toxin-Packed Stem Cells Used To Kill Cancer

Toxin-Packed Stem Cells Used To Kill Cancer

Newsy (Oct. 25, 2014) — A Harvard University Research Team created genetically engineered stem cells that are able to kill cancer cells, while leaving other cells unharmed. Video provided by Newsy
Powered by NewsLook.com
IKEA Desk Converts From Standing to Sitting With One Button

IKEA Desk Converts From Standing to Sitting With One Button

Buzz60 (Oct. 24, 2014) — IKEA is out with a new convertible desk that can convert from a sitting desk to a standing one with just the push of a button. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com
Ebola Protective Suits Being Made in China

Ebola Protective Suits Being Made in China

AFP (Oct. 24, 2014) — A factory in China is busy making Ebola protective suits for healthcare workers and others fighting the spread of the virus. Duration: 00:38 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins