Featured Research

from universities, journals, and other organizations

Peripheral Nerve Repair With Fat Precursor Cells Led To Wider Nerves And Less Muscle Atrophy

Date:
June 16, 2009
Source:
Cell Transplantation Center of Excellence for Aging and Brain Repair
Summary:
Multipotent, abundant, easily isolated fat (adipose) precursor cells (APCs) demonstrate an ability to differentiate in vitro into cartilage chondrogenic, boneosteogenic, fatadipogenic and muscle tissue myogenic cell types. A new study shows that when transplanted APCs can improve nerve regeneration and functional recovery in the injured peripheral nerves of laboratory rats.

Multipotent, abundant, easily isolated fat (adipose) precursor cells (APCs) demonstrate an ability to differentiate in vitro into cartilage chondrogenic, boneosteogenic, fatadipogenic and muscle tissue myogenic cell types. This study shows that when transplanted APCs can improve nerve regeneration and functional recovery in the injured peripheral nerves of laboratory rats.

Conduit-guided, human-derived APCs survived up to 12 weeks in the injured peripheral nerves of laboratory animals and formed more robust nerve cells compared to controls not receiving cell transplants.

To determine if guided fat (adipose) precursor cells (APCs) could improve nerve regeneration and functional recovery, researchers at the University of Pittsburgh (USA) used biodegradable nerve guides to transplant APCs into the injured peripheral nerves of laboratory rats.

"Adipose tissues, shown to be multipotent, have also been shown to be an abundant source of post-natal precursor cells that are relatively easy to isolate from fat tissue and in sufficient amounts to be injected immediately post-isolation," said Dr. Kacey Marra, lead author of a study published in the current issue of the journal Cell Transplantation (18:2).

Adipose precursor cells, said Marra and co-authors, have demonstrated an ability to differentiate in vitro into cartilage (chondrogenic), bone (osteogenic), fat (adipogenic) and muscle (myogenic) cell types.

Control groups for this study included those with no treatment, those receiving an autograft but no nerve guide tube, and those receiving an autograft and nerve guide tube but no APC transplant in the guide tube.

Researchers noted that the "gold standard" for nerve repair is the autograft to repair nerve gaps. Pre-clinical studies have shown that including Schwann cells within nerve conduits can enhance nerve regeneration. However, the incorporation of Schwann cells requires a second surgery, renders a secondary nerve nonfunctional, and requires Schwann cells in high numbers that are clinically challenging to obtain.

According to the researchers, significant differences in the sciatic functional index (SFI) were observed three weeks post-injury in the autografted, APC-transplanted group using nerve guides over a control group in which nerve guides were left empty. Researchers also observed the formation of a more robust nerve accompanied by modestly decreased muscle atrophy in the APC-transplanted group. No differences were observed after 12 weeks, however.

"We found that full regeneration of the sciatic nerve occurred in the rats receiving the autograft, the guide, and the guide loaded with APCs. No regeneration was observed in any of the rats in which the defect was left untreated," said Marra.

Their results also showed that transplanted human-derived APCs survived for up to 12 weeks in the injured peripheral nerve and formed a more robust nerve with nerve cells more than double the size of those formed using the conduit alone.

"The versatility of adult precursor cells, such as those from adipose, for the treatment of a number of disorders is promising and this study demonstrates their potential benefit towards nerve repair," said section editor Dr. John Sladek, professor of pediatrics and neuroscience at the University of Colorado School of Medicine.


Story Source:

The above story is based on materials provided by Cell Transplantation Center of Excellence for Aging and Brain Repair. Note: Materials may be edited for content and length.


Cite This Page:

Cell Transplantation Center of Excellence for Aging and Brain Repair. "Peripheral Nerve Repair With Fat Precursor Cells Led To Wider Nerves And Less Muscle Atrophy." ScienceDaily. ScienceDaily, 16 June 2009. <www.sciencedaily.com/releases/2009/06/090616121349.htm>.
Cell Transplantation Center of Excellence for Aging and Brain Repair. (2009, June 16). Peripheral Nerve Repair With Fat Precursor Cells Led To Wider Nerves And Less Muscle Atrophy. ScienceDaily. Retrieved August 23, 2014 from www.sciencedaily.com/releases/2009/06/090616121349.htm
Cell Transplantation Center of Excellence for Aging and Brain Repair. "Peripheral Nerve Repair With Fat Precursor Cells Led To Wider Nerves And Less Muscle Atrophy." ScienceDaily. www.sciencedaily.com/releases/2009/06/090616121349.htm (accessed August 23, 2014).

Share This




More Health & Medicine News

Saturday, August 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Drug Used To Treat 'Ebola's Cousin' Shows Promise

Drug Used To Treat 'Ebola's Cousin' Shows Promise

Newsy (Aug. 21, 2014) An experimental drug used to treat Marburg virus in rhesus monkeys could give new insight into a similar treatment for Ebola. Video provided by Newsy
Powered by NewsLook.com
Two US Ebola Patients Leave Hospital Free of the Disease

Two US Ebola Patients Leave Hospital Free of the Disease

AFP (Aug. 21, 2014) Two American missionaries who were sickened with Ebola while working in Liberia and were treated with an experimental drug are doing better and have left the hospital, doctors say on August 21, 2014. Duration: 01:05 Video provided by AFP
Powered by NewsLook.com
Cadavers, a Teen, and a Medical School Dream

Cadavers, a Teen, and a Medical School Dream

AP (Aug. 21, 2014) Contains graphic content. He's only 17. But Johntrell Bowles has wanted to be a doctor from a young age, despite the odds against him. He was recently the youngest participant in a cadaver program at the Indiana University NW medical school. (Aug. 21) Video provided by AP
Powered by NewsLook.com
American Ebola Patients Released: What Cured Them?

American Ebola Patients Released: What Cured Them?

Newsy (Aug. 21, 2014) It's unclear whether the American Ebola patients' recoveries can be attributed to an experimental drug or early detection and good medical care. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins