Featured Research

from universities, journals, and other organizations

New Enemy For Tumor-suppressor P53 Identified

Date:
July 1, 2009
Source:
University of Texas M. D. Anderson Cancer Center
Summary:
Researchers have identified a protein that marks the tumor suppressor p53 for destruction, providing a potential new avenue for restoring p53 in cancer cells.

Researchers at The University of Texas M. D. Anderson Cancer Center have identified a protein that marks the tumor suppressor p53 for destruction, providing a potential new avenue for restoring p53 in cancer cells.

Related Articles


The new protein, called Trim24, feeds p53 to a protein-shredding complex known as the proteasome by attaching targeting molecules called ubiquitins to the tumor suppressor, the team reported this week in the Proceedings of the National Academy of Sciences Online Early Edition.

"Targeting Trim24 may offer a therapeutic approach to restoring p53 and killing tumor cells," said senior author Michelle Barton, Ph.D., professor in M. D. Anderson's Department of Biochemistry and Molecular Biology.

The discovery is based on an unusual approach to studying p53, which normally forces potentially cancerous cells to kill themselves and is shut down or depleted in most human cancers. Studies of the p53 protein and gene tend to focus on cancer cell lines or tumors, where the dysfunction already is established, Barton said. "We wanted to purify p53 from normal cells to better understand the mechanisms that regulate it."

The team developed a strain of mice with a biochemical tag attached to every p53 protein expressed. After first assuring that the tagged p53 behaved like normal p53, the team then used the tag, or hook, to extract the protein. "We could then identify proteins that were attached to p53, interacting with it, through mass spectrometry," Barton said.

They found Trim24, a protein previously unassociated with p53 that is highly expressed in tumors and is a target of two known oncogenes in distinct forms of leukemia and thyroid cancer.

Subsequent experiments showed that decreased levels of Trim24 led to increased levels of p53 expression in the cell nucleus, and increasing Trim24 expression reduced p53 levels. Loss of Trim24 expression in a breast cancer cell line caused spontaneous programmed cell death - apoptosis. A similar response was confirmed in human lung, colon and prostate cancer cells.

Treating cells with a proteasome inhibitor also led to increased p53 expression. Removing an important binding domain of Trim24 or depleting it completely both led to greatly reduced ubiquitin targeting of p53.

An analogous system in fruit flies showed that a simpler version of Trim24 in the flies plays a similar role regulating p53, demonstrating that the relationship is evolutionarily conserved.

Co-authors with Barton are first author Kendra Allton, Abhinav Jain, Ph.D., Hans-Martin Herz, Ph.D., Wen-Wei Tsai, Ph.D., Andres Bergmann, Ph.D., and Randy Johnson, Ph.D., all of M. D. Anderson's Department of Biochemistry and Molecular Biology; and Sung Yun Jung, Ph.D., and Jun Qin, Ph.D., of the Department of Molecular and Cellular Biology at Baylor College of Medicine. Allton completed the paper as her master's degree thesis for The University of Texas Graduate School of Biomedical Sciences, a joint program of M. D. Anderson and The University of Texas Health Science Center at Houston. Allton, Jain, Tsai, Johnson and Barton also are with M. D. Anderson's Center for Stem Cell and Developmental Biology.

Funding for the project was provided by M. D. Anderson's Kleberg Fund for Innovative Research, grants from the National Institutes of Health, CellCentric, Ltd., the Kadoorie Foundation, the Welch Foundation, the National Cancer Institute and the Laura and John Arnold Foundation Odyssey Fellowship (for Abhinav Jain).


Story Source:

The above story is based on materials provided by University of Texas M. D. Anderson Cancer Center. Note: Materials may be edited for content and length.


Cite This Page:

University of Texas M. D. Anderson Cancer Center. "New Enemy For Tumor-suppressor P53 Identified." ScienceDaily. ScienceDaily, 1 July 2009. <www.sciencedaily.com/releases/2009/06/090626190937.htm>.
University of Texas M. D. Anderson Cancer Center. (2009, July 1). New Enemy For Tumor-suppressor P53 Identified. ScienceDaily. Retrieved December 21, 2014 from www.sciencedaily.com/releases/2009/06/090626190937.htm
University of Texas M. D. Anderson Cancer Center. "New Enemy For Tumor-suppressor P53 Identified." ScienceDaily. www.sciencedaily.com/releases/2009/06/090626190937.htm (accessed December 21, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Sunday, December 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Touch-Free Smart Phone Empowers Mobility-Impaired

Touch-Free Smart Phone Empowers Mobility-Impaired

Reuters - Innovations Video Online (Dec. 21, 2014) A touch-free phone developed in Israel enables the mobility-impaired to operate smart phones with just a movement of the head. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Earthworms Provide Cancer-Fighting Bacteria

Earthworms Provide Cancer-Fighting Bacteria

Reuters - Innovations Video Online (Dec. 21, 2014) Polish scientists isolate bacteria from earthworm intestines which they say may be used in antibiotics and cancer treatments. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Reuters - Innovations Video Online (Dec. 21, 2014) A team of scientists led by Danish chemist Jorn Christensen says they have isolated two chemical compounds within an existing antipsychotic medication that could be used to help a range of failing antibiotics work against killer bacterial infections, such as Tuberculosis. Jim Drury went to meet him. Video provided by Reuters
Powered by NewsLook.com
Hugging It Out Could Help You Ward Off A Cold

Hugging It Out Could Help You Ward Off A Cold

Newsy (Dec. 21, 2014) Carnegie Mellon researchers found frequent hugs can help people avoid stress-related illnesses. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins