Featured Research

from universities, journals, and other organizations

New Enemy For Tumor-suppressor P53 Identified

Date:
July 1, 2009
Source:
University of Texas M. D. Anderson Cancer Center
Summary:
Researchers have identified a protein that marks the tumor suppressor p53 for destruction, providing a potential new avenue for restoring p53 in cancer cells.

Researchers at The University of Texas M. D. Anderson Cancer Center have identified a protein that marks the tumor suppressor p53 for destruction, providing a potential new avenue for restoring p53 in cancer cells.

Related Articles


The new protein, called Trim24, feeds p53 to a protein-shredding complex known as the proteasome by attaching targeting molecules called ubiquitins to the tumor suppressor, the team reported this week in the Proceedings of the National Academy of Sciences Online Early Edition.

"Targeting Trim24 may offer a therapeutic approach to restoring p53 and killing tumor cells," said senior author Michelle Barton, Ph.D., professor in M. D. Anderson's Department of Biochemistry and Molecular Biology.

The discovery is based on an unusual approach to studying p53, which normally forces potentially cancerous cells to kill themselves and is shut down or depleted in most human cancers. Studies of the p53 protein and gene tend to focus on cancer cell lines or tumors, where the dysfunction already is established, Barton said. "We wanted to purify p53 from normal cells to better understand the mechanisms that regulate it."

The team developed a strain of mice with a biochemical tag attached to every p53 protein expressed. After first assuring that the tagged p53 behaved like normal p53, the team then used the tag, or hook, to extract the protein. "We could then identify proteins that were attached to p53, interacting with it, through mass spectrometry," Barton said.

They found Trim24, a protein previously unassociated with p53 that is highly expressed in tumors and is a target of two known oncogenes in distinct forms of leukemia and thyroid cancer.

Subsequent experiments showed that decreased levels of Trim24 led to increased levels of p53 expression in the cell nucleus, and increasing Trim24 expression reduced p53 levels. Loss of Trim24 expression in a breast cancer cell line caused spontaneous programmed cell death - apoptosis. A similar response was confirmed in human lung, colon and prostate cancer cells.

Treating cells with a proteasome inhibitor also led to increased p53 expression. Removing an important binding domain of Trim24 or depleting it completely both led to greatly reduced ubiquitin targeting of p53.

An analogous system in fruit flies showed that a simpler version of Trim24 in the flies plays a similar role regulating p53, demonstrating that the relationship is evolutionarily conserved.

Co-authors with Barton are first author Kendra Allton, Abhinav Jain, Ph.D., Hans-Martin Herz, Ph.D., Wen-Wei Tsai, Ph.D., Andres Bergmann, Ph.D., and Randy Johnson, Ph.D., all of M. D. Anderson's Department of Biochemistry and Molecular Biology; and Sung Yun Jung, Ph.D., and Jun Qin, Ph.D., of the Department of Molecular and Cellular Biology at Baylor College of Medicine. Allton completed the paper as her master's degree thesis for The University of Texas Graduate School of Biomedical Sciences, a joint program of M. D. Anderson and The University of Texas Health Science Center at Houston. Allton, Jain, Tsai, Johnson and Barton also are with M. D. Anderson's Center for Stem Cell and Developmental Biology.

Funding for the project was provided by M. D. Anderson's Kleberg Fund for Innovative Research, grants from the National Institutes of Health, CellCentric, Ltd., the Kadoorie Foundation, the Welch Foundation, the National Cancer Institute and the Laura and John Arnold Foundation Odyssey Fellowship (for Abhinav Jain).


Story Source:

The above story is based on materials provided by University of Texas M. D. Anderson Cancer Center. Note: Materials may be edited for content and length.


Cite This Page:

University of Texas M. D. Anderson Cancer Center. "New Enemy For Tumor-suppressor P53 Identified." ScienceDaily. ScienceDaily, 1 July 2009. <www.sciencedaily.com/releases/2009/06/090626190937.htm>.
University of Texas M. D. Anderson Cancer Center. (2009, July 1). New Enemy For Tumor-suppressor P53 Identified. ScienceDaily. Retrieved April 1, 2015 from www.sciencedaily.com/releases/2009/06/090626190937.htm
University of Texas M. D. Anderson Cancer Center. "New Enemy For Tumor-suppressor P53 Identified." ScienceDaily. www.sciencedaily.com/releases/2009/06/090626190937.htm (accessed April 1, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Wednesday, April 1, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

7-Year-Old Girl Gets 3-D Printed 'robohand'

7-Year-Old Girl Gets 3-D Printed 'robohand'

AP (Mar. 31, 2015) — Although she never had much interest in prosthetic limbs before, Faith Lennox couldn&apos;t wait to slip on her new robohand. The 7-year-old, who lost part of her left arm when she was a baby, grabbed it as soon as it came off a 3-D printer. (March 31) Video provided by AP
Powered by NewsLook.com
Solitair Device Aims to Takes Guesswork out of Sun Safety

Solitair Device Aims to Takes Guesswork out of Sun Safety

Reuters - Innovations Video Online (Mar. 31, 2015) — The Solitair device aims to take the confusion out of how much sunlight we should expose our skin to. Small enough to be worn as a tie or hair clip, it monitors the user&apos;s sun exposure by taking into account their skin pigment, location and schedule. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Soda, Salt and Sugar: The Next Generation of Taxes

Soda, Salt and Sugar: The Next Generation of Taxes

Washington Post (Mar. 30, 2015) — Denisa Livingston, a health advocate for the Dinι Community Advocacy Alliance, and the Post&apos;s Abby Phillip discuss efforts around the country to make unhealthy food choices hurt your wallet as much as your waistline. Video provided by Washington Post
Powered by NewsLook.com
UnitedHealth Buys Catamaran

UnitedHealth Buys Catamaran

Reuters - Business Video Online (Mar. 30, 2015) — The $12.8 billion merger will combine the U.S.&apos; third and fourth largest pharmacy benefit managers. Analysts say smaller PBMs could also merge. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins