Featured Research

from universities, journals, and other organizations

Extending The Shelf Life Of Antibody Drugs

Date:
June 30, 2009
Source:
Massachusetts Institute of Technology
Summary:
A new computer model can help solve a problem that has plagued drug companies trying to develop promising new treatments made of antibodies: Such drugs have a relatively short shelf life because they tend to clump together, rendering them ineffective.

A new computer model developed at MIT can help solve a problem that has plagued drug companies trying to develop promising new treatments made of antibodies: Such drugs have a relatively short shelf life because they tend to clump together, rendering them ineffective.

Antibodies are the most rapidly growing class of human drugs, with the potential to treat cancer, arthritis and other chronic inflammatory and infectious diseases. About 200 such drugs are now in clinical trials, and a few are already on the market.

Patients can administer these drugs to themselves, but this requires high doses — and the drugs must therefore be stored at high concentrations. However, under these conditions the drugs tend to clump, or aggregate. Even if they are stored at lower concentrations and administered by a doctor intravenously, they often have stability issues. Addressing such issues typically takes place later in the drug development process, and the cost — both in time and money — is often high.

Currently there is no straightforward way to address these storage issues early in the development process.

"Drugs are usually developed with the criteria of how effective they'll be, and how well they'll bind to whatever target they're supposed to bind," says Bernhardt Trout, professor of chemical engineering and leader of the MIT team. "The problem is there are all of these issues down the line that were never taken into account."

Trout and his colleagues, including Bernhard Helk of Novartis, have developed a computer model that can help designers identify which parts of an antibody are most likely to attract other molecules, allowing them to alter the antibodies to prevent such clumping. The model, which the researchers aim to incorporate in the drug discovery process, is described in a paper appearing in the online edition of the Proceedings of the National Academy of Sciences the week of June 29.

Preventing aggregation

Most of the aggregation seen in antibodies is due to interactions between exposed hydrophobic (water-fearing) regions of the proteins.

Trout's new model, known as SAP (spatial aggregation propensity), offers a dynamic, three-dimensional simulation of antibody molecules. Unlike static representations such as those provided by X-ray crystallography, the new model can reveal hydrophobic regions and also indicates how much those regions are exposed when the molecule is in solution. The other important aspect of the model is that it selects out regions responsible for aggregation, as opposed to just single sites.

Once the hydrophobic regions are known, researchers can mutate the amino acids in those regions to decrease hydrophobicity and make the molecule more stable. Using the model, the team produced mutated antibodies with greatly enhanced stability (up to 50 percent more than the original antibodies), and the mutations had no adverse affect on their function.

Lead authors of the PNAS paper are Naresh Chennamsetty and Vladimir Voynov, postdoctoral associates in MIT's Department of Chemical Engineering. Other authors are chemical engineering postdoctoral associate Veysel Kayser and Bernhard Helk of Novartis.

The research was funded by Novartis Pharma AG and computer time was provided in part by the National Center for Supercomputing Applications.


Story Source:

The above story is based on materials provided by Massachusetts Institute of Technology. Note: Materials may be edited for content and length.


Cite This Page:

Massachusetts Institute of Technology. "Extending The Shelf Life Of Antibody Drugs." ScienceDaily. ScienceDaily, 30 June 2009. <www.sciencedaily.com/releases/2009/06/090629200806.htm>.
Massachusetts Institute of Technology. (2009, June 30). Extending The Shelf Life Of Antibody Drugs. ScienceDaily. Retrieved April 20, 2014 from www.sciencedaily.com/releases/2009/06/090629200806.htm
Massachusetts Institute of Technology. "Extending The Shelf Life Of Antibody Drugs." ScienceDaily. www.sciencedaily.com/releases/2009/06/090629200806.htm (accessed April 20, 2014).

Share This



More Computers & Math News

Sunday, April 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Nintendo Changed Gaming World, but Its Future Uncertain: Upstone

Nintendo Changed Gaming World, but Its Future Uncertain: Upstone

AFP (Apr. 19, 2014) The Nintendo Game Boy celebrates its 25th anniversary Monday and game expert Stephen Upstone says the console can be credited with creating a trend towards handheld gaming devices. Duration: 01:21 Video provided by AFP
Powered by NewsLook.com
Why Did Nike Fire Most Of Its Nike FuelBand Team?

Why Did Nike Fire Most Of Its Nike FuelBand Team?

Newsy (Apr. 19, 2014) Nike fired most of its Digital Sport hardware team, the group behind Nike's FuelBand device. Could Apple or an overcrowded market be behind layoffs? Video provided by Newsy
Powered by NewsLook.com
Nearly Two Weeks On, The Internet Copes With Heartbleed

Nearly Two Weeks On, The Internet Copes With Heartbleed

Newsy (Apr. 19, 2014) The Internet is taking important steps in patching the vulnerabilities Heartbleed highlighted, but those preventive measures carry their own costs. Video provided by Newsy
Powered by NewsLook.com
Facebook To Share Nearby Friends Data With Advertisers

Facebook To Share Nearby Friends Data With Advertisers

Newsy (Apr. 19, 2014) A Facebook spokesperson has confirmed the company will use GPS data from the new Nearby Friends feature for advertising sometime in the future. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins